Routing Implementation Cisco vs. MikroTik

Lay Minh (Makito)
CCIE # 47682
MikroTik Certified Trainer, MikroTik Consultant
ABOUT ME

- **Lay Minh**
 - My nick name is **Makito**
 - CCIE # 47682
 - MikroTik Certified Trainer & Consultant
 - Chief Technology Officer (CTO) at i-BEAM
 - Experiences:
 - 10 years in ISP industry since 2005
 - Billing solutions for service providers
 - ISP core network design and operations
 - Certifications:
 - CCIE Service Provider, JNCIA-Junos, JNCIS-SP
 - MikroTik
 - MTCNA, MTCRE, MTCWE, MTCTCE, MTCUME, MTCINE
 - Areas of interest: BGP, MPLS, IPv6
ABOUT THE PRESENTATION

- This presentation **IS** talking about differences between Cisco IOS’ implementation and MikroTik RouterOS’ implementation on some standardized technologies.
- This presentation **IS NOT** a lecture talks about the technology itself.

There are some prerequisites:
- General knowledge about routing concepts
- Basic understanding about what they are and what they do:
 - Open Shortest Path First (OSPF)
 - Border Gateway Protocol (BGP)
 - Multiprotocol Label Switching (MPLS)
Routing Components

- **RIB (Routing Information Base)**
 - Well-known as “IP Routing Table”
 - For network engineers to read routing information

- **FIB (Forwarding Information Base)**
 - Well-known as “IP Forwarding Table”
 - More hardware-friendly, for the router hardware
 - CEF (Cisco Express Forwarding) in Cisco IOS
General Routing

- **Difference between vendor’s implementations:**

<table>
<thead>
<tr>
<th></th>
<th>Cisco IOS</th>
<th>MikroTik RouterOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIB Load Balancing</td>
<td>Per Src. and Dst. Address Pair or Per-Packet</td>
<td>Per Src. and Dst. Address Pair (Flush every 10 minutes)</td>
</tr>
<tr>
<td>Equal Cost Multi Path (ECMP)</td>
<td>Add multiple routes to same destination with same distance, but different gateway</td>
<td>Add only one route by mentioning multiple gateways in the same route</td>
</tr>
<tr>
<td>Recursive Nexthop Lookup</td>
<td>Enabled</td>
<td>Disabled by default, can manually enable by route’s Target Scope parameter</td>
</tr>
<tr>
<td>Route Filtering Behavior</td>
<td>Implicit deny at the end of each filtering component (access-list, prefix-list, filter-list, route-map...etc.)</td>
<td>Implicit permit at the end of filtering component (Routing Filters)</td>
</tr>
</tbody>
</table>
Load Balancing with ECMP

Cisco IOS configuration:

```
R1(config)#ip route 0.0.0.0 0.0.0.0 10.1.1.1
R1(config)#ip route 0.0.0.0 0.0.0.0 10.2.2.1
```

MikroTik RouterOS configuration:

```
[admin@R1] > /ip route add dst-address=0.0.0.0/0 \
gateway=10.1.1.1,10.2.2.1
```
In common ISP practice, R1 and R2 will have iBGP peering.

R2 advertises routes to R1 with its Loopback as nexthop:
- **R2**: “Wanna go to 8.8.8.0/24? Come to me! Then I’ll send you there!”

R1 performs recursive lookup to find out ways to reach R2:
- **R1**: “Well...how to go to **R2**? let me take a look in my routing table...”
- **R1**: “Ahha! I got it! It is via **R3** or **R5**, thanks to my lovely OSPF! 😊”
Open Shortest Path First (OSPF)

- RFC 2328 for OSPFv2, RFC 5340 for OSPFv3
- Difference between vendor’s implementations:

<table>
<thead>
<tr>
<th></th>
<th>Cisco IOS</th>
<th>MikroTik RouterOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router ID</td>
<td>Highest active Loopback IP, then Highest active Interface IP</td>
<td>Lowest active interface IP</td>
</tr>
<tr>
<td>Link Cost</td>
<td>Vary depends on Link BW Ref. BW (bps) / Link BW (bps) Default Ref. BW is 100Mbps</td>
<td>Fixed Cost 10 for any links, changeable in OSPF interface configuration</td>
</tr>
<tr>
<td>OSPF Timer</td>
<td>Vary depends on network type “broadcast” and “point-to-point”, Hello interval is 10, Dead interval is 40</td>
<td>Fixed Hello interval 10, and Dead interval 40, changeable in OSPF interface configuration</td>
</tr>
<tr>
<td></td>
<td>For “nbma”, Hello interval is 30, Dead interval is 120</td>
<td>*** CAUTION: When changed network type, intervals are not changed!!</td>
</tr>
</tbody>
</table>
Open Shortest Path First (OSPF) (Cont.)

<table>
<thead>
<tr>
<th></th>
<th>Cisco IOS</th>
<th>MikroTik RouterOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stub Area</td>
<td>Type 3 LSAs are advertised into Stub Area by default, unless configured as Totally Stubby Area</td>
<td>Behaves like Totally Stubby Area in IOS by default. Enable “Inject Summary LSAs” option if want to advertise Type 3 LSAs into Stub Area</td>
</tr>
<tr>
<td>Route Filtering</td>
<td>Use “distribute-list” command to permit/deny routes to be installed into RIB</td>
<td>Use “Routing Filters” to permit/deny routes to be installed into RIB, but can filter only Type 5 LSAs</td>
</tr>
<tr>
<td>Advertising Loopback interface into OSPF</td>
<td>By default, subnet mask of the interface route is forced to be /32. Set the interface network type as “point-to-point” to advertise exact subnet mask</td>
<td>By default, exact subnet mask is advertised, no action required</td>
</tr>
</tbody>
</table>
OSPF Cost (IOS)

- Link Cost = Reference Bandwidth in bps / Link Bandwidth in bps
 - By default, Reference Bandwidth is 100Mbps
- For R1 to reach R2’s Loopback (10.255.255.2)
 - Shortest path is **R5-R6-R2**, total cost is 4 \((1+1+1+1)\)
 - Path via **R3** has higher cost **13** \((10+1+1+1)\)
OSPF Cost (RouterOS)

Link Cost = 10

For R1 to reach R2’s Loopback (10.255.255.2)

- There are two shortest paths, R3-R4-R2 and R5-R6-R2
- Each path’s total cost is 40 (10+10+10+10)
- R1 will install ECMP route and load balance over both links
BORDER GATEWAY PROTOCOL (BGP)

- Described in RFC 4271
- Difference between vendor’s implementations:

<table>
<thead>
<tr>
<th></th>
<th>Cisco IOS</th>
<th>MikroTik RouterOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router ID</td>
<td>Highest active Loopback IP, Highest active Interface IP</td>
<td>Lowest active interface IP</td>
</tr>
<tr>
<td>Routes Received</td>
<td>Stores in BGP table, best path will be installed to RIB</td>
<td>Stores in RIB, best path will be active</td>
</tr>
<tr>
<td>Best Path Selection</td>
<td>IGP Metric to Nexthop is considered when multiple equal-cost paths exist</td>
<td>IGP Metric to Nexthop is ignored</td>
</tr>
<tr>
<td>Soft Reconfiguration</td>
<td>Unused routes are stored in BGP table and marked with “(receive-only)” flag</td>
<td>Unused routes are installed in RIB, but inactive</td>
</tr>
</tbody>
</table>
Border Gateway Protocol (BGP) (Cont.)

<table>
<thead>
<tr>
<th></th>
<th>Cisco IOS</th>
<th>MikroTik RouterOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGP Multi Path</td>
<td>Up to 8 ~ 32 paths depends on IOS version</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For dual-homed scenarios, can tweak BGP load sharing by peering eBGP multi-hop with Loopbacks if there are multiple links to neighbor AS</td>
</tr>
<tr>
<td>Route Advertisement</td>
<td>Based on BGP table, can advertise best path installed in BGP table but not in RIB</td>
<td>Based on RIB, can advertise only best path installed and active in RIB</td>
</tr>
<tr>
<td>BGP Community</td>
<td>Receive only, community sending is disabled by default</td>
<td>Send and receive are enabled by default</td>
</tr>
<tr>
<td>IPv6 Prefix over IPv4 BGP Session</td>
<td>Nexthop is IPv4 address, needs to correct with “route-map”</td>
<td>Nexthop is IPv6 address, no action required</td>
</tr>
</tbody>
</table>
BGP Best Path Selection

- OSPF link costs in AS65502 are set to 10 for ease of understanding
- Customer A connects to 2 provider routers (dual-homed)
 - eBGP peering with R2 and R6
 - Advertises prefix 10.200.0.0/24 with exact same BGP attributes
BGP Best Path Selection (Cont.)

1. Nexthop must be reachable.
2. Highest Weight (default 0).
3. Highest Local Pref. (default 100).
4. Shortest AS Path.
5. Locally originated path (aggregated route or BGP network).
6. Lowest origin type (IGP < EGP < Incomplete).
7. Lowest MED (default 0).
8. Prefer eBGP over iBGP.
9. Lowest Router ID.
10. Lowest Originator ID.
11. Shortest route reflection cluster (default 0).
12. Lowest neighbor address.
If R1-R3 link and R3-R4 link both have OSPF link cost 5

From R1’s point of view, there are 2 equal cost paths (via R2 & R6) in BGP to reach 10.200.0.0/24

- R1 can install both of them into RIB and perform load balancing
BGP Multi Path (RouterOS)

- RouterOS does not support BGP Multi Path feature as IOS.
- However, it is possible to do load balancing when customer has multiple links to the same Provider Edge (PE) router.
 - Point ECMP routes to PE and CE’s Loopbacks, then peer multi-hop eBGP.
ROUTE ADVERTISEMENT (IOS)

- R4 advertises 10.255.255.4/32 into both OSPF and BGP
- R5 receives 10.255.255.4/32 via both protocols
 - According to AD, R5 installs only OSPF route into RIB
 - However, R5 will reflect BGP prefix 10.255.255.4/32 to other RR clients
- Other routers receive 10.255.255.4/32 via both protocols
 - According to AD, they install only OSPF route into RIB
 - But they will also re-advertise it to eBGP peers (if not filtered)
R4 advertises **10.255.255.4/32** into both OSPF and BGP

R5 receives **10.255.255.4/32** via both protocols
- According to AD, R5 installs only OSPF route into RIB
- R5 will not advertise BGP prefix **10.255.255.4/32** further, because the received BGP prefix is inactive in RIB

Other routers receive **10.255.255.4/32** via OSPF only
- OSPF route is installed
Route Redistribution

- **Difference between vendor’s implementations:**

<table>
<thead>
<tr>
<th></th>
<th>Cisco IOS</th>
<th>MikroTik RouterOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redistribute from BGP into OSPF</td>
<td>By default, prefixes are redistributed as classful subnet</td>
<td>By default, prefixes are redistributed as CIDR, no action required</td>
</tr>
<tr>
<td></td>
<td>Use “subnets” keyword to redistribute as CIDR</td>
<td></td>
</tr>
<tr>
<td>Redistribute from OSPF into BGP</td>
<td>Origin code of the prefix is “Incomplete”</td>
<td>Origin code of the prefix is “IGP”</td>
</tr>
<tr>
<td></td>
<td>External routes are not redistributed by default unless “external” or “nssa-external” keyword is specified</td>
<td>External routes are redistributed by default</td>
</tr>
</tbody>
</table>
Multiprotocol Label Switching (MPLS)

- MPLS Architecture described in RFC 3031
- MPLS is covering more than 130 RFCs
- Difference between vendor’s implementations:

<table>
<thead>
<tr>
<th>Multi Path with Label Distribution Protocol (LDP)</th>
<th>Cisco IOS</th>
<th>MikroTik RouterOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi Path with Label Distribution Protocol (LDP)</td>
<td>Yes</td>
<td>No, only first gateway will be used in MPLS forwarding table (MFIB)</td>
</tr>
<tr>
<td>MPLS Fast Reroute</td>
<td>Link Protection (~50ms) Node Protection</td>
<td>Not supported</td>
</tr>
<tr>
<td>MPLS Applications</td>
<td>6PE, 6VPE, L3VPN (Unicast and Multicast), AToM, VPLS</td>
<td>L3VPN (Unicast), VPLS</td>
</tr>
<tr>
<td>MPLS QoS with EXP bit</td>
<td>Possible on P routers and PE routers by utilizing Modular QoS CLI (MQC)</td>
<td>Only possible on PE routers, P routers will not apply any policy to MPLS packets</td>
</tr>
</tbody>
</table>
MPLS QoS

- Provider Edge (PE) = Access Router or Border Router
- Provider (P) = Core Router
- In IOS, QoS is possible everywhere along the path
- In RouterOS, P router ignores all QoS treatments and firewall filters, policies have to be implemented on PEs
 - Newer versions of RouterOS do not have this limitation anymore
If you have any questions, please feel free to ask!
THE END
THANKS FOR YOUR ATTENTION!

Contact Me
makito@informationbeam.net
Skype: akn_makito
Phone: (+95) 09 799 799 282