BGP ROUTE REFLECTION

Lay Minh (Makito)

CCIE # 47682 MikroTik Certified Trainer, MikroTik Consultant makito.ogawa@gmail.com

BGP

- BGP routes the Internet.
- 638k+ prefixes in Internet routing table as of November 2016.
 - Reference: http://www.cidr-report.org/2.0/
- External BGP (eBGP) between ASes
 Internal BGP (iBGP) within AS.
- Common ISP practices:
 - IGP carries infrastructure links and loopbacks
 - BGP carries Internet and customer prefixes
 - Redistributing Internet routes into IGP is not realistic

PROBLEMS TO BE SOLVED

• iBGP requires full mesh peering.

- iBGP does not manipulate AS Path, no loop prevention
- iBGP-learned prefixes won't be re-advertised to iBGP peers

• iBGP full mesh does not scale in big networks

- Massive iBGP sessions
 - 50 BGP routers require 1,225 sessions
 - 100 BGP routers require 4,950 sessions
 - Formula: **n (n 1) / 2**, n = Number of routers
- Management and operational overhead
 - Required configuration changes on all routers whenever a new router added

Solutions

- AS Confederation (RFC 1965, 3065, 5065)
 - Divides AS into multiple sub-ASes.
 - To outside world confederation appears as single AS
 - eBGP between confederation ASes:
 - Loop prevention by AS Path
 - iBGP is required in each sub-AS
 - Not our main focus in this presentation
- Route Reflection (RFC 1966, 2796, 4456)
 - Re-advertise iBGP prefixes to avoid full mesh
 - Client to client reflection
 - Client to non-client reflection
 - Loop prevention by Originator ID and Cluster List

How Route Reflection Works?

Route Reflector (RR)

- Central point of route reflection
- Defines Route Reflector Client on BGP peering configuration

• Route Reflector Client (RR Client)

- Not self-aware as reflector client, no configuration required
- Only peers to RR, full mesh between RR Clients is eliminated

• RRs change route advertisement rules:

- eBGP learned routes...
 - Pass to eBGP peers, RR Clients, and Non-Clients
- RR Client learned routes...
 - Pass to eBGP peers, RR Clients, and Non-Clients
- Non-Client learned routes...
 - Pass to eBGP peers & RR Clients

ROUTE REFLECTION PROS & CONS

• Pros

- Scalability
- Reduced Operational Cost
- Reduced Number of BGP Updates
- Incremental Deployability

o Cons

- Robustness
- Prolonged Routing Convergence
- Reduced Path Diversity
- Suboptimal Routes or Potential Loops

ROUTE REFLECTOR CONFIGURATION

• Choose a router in the network to run as RR.

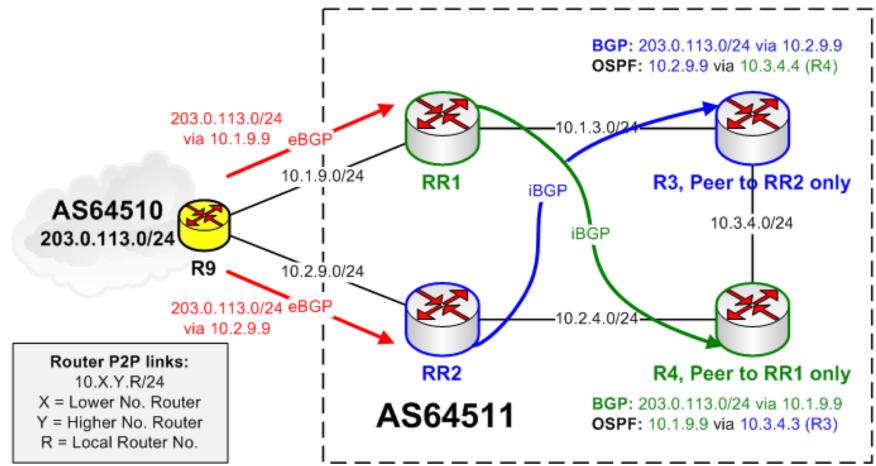
Redundant RRs are recommended

• Define RR Client on RR.

```
• Cisco IOS CLI
```

```
R1(config) # router bgp 64511
R1(config-router) # bgp router-id 10.255.255.1
R1(config-router) # neighbor 10.255.255.2 remote-as 64511
R1(config-router) # neighbor 10.255.255.2 update-source Loopback0
R1(config-router) # neighbor 10.255.255.2 route-reflector-client
```

MikroTik RouterOS


```
# Configure BGP peer and set as RR Client
[admin@R1] /routing bgp peer> add name=IBGP-R2-IPV4 \
    instance=AS64511 \
    remote-as=64511 remote-address=10.255.255.2 \
    update-source=lo0 route-reflect=yes
```

ROUTE REFLECTOR DESIGN

- By default RR reflects only single best path.
- Placement of RR can be important.
 - RR's best path not necessarily means it is a best path for RR Client's prospective – Introduces Suboptimal Routing
- In-band Route Reflector
 - Common design
 - RR Clients peer to the nearest RR to avoid route deflection
- Out-of-band Route Reflector
 - Works well for MPLS-enabled core
 - Carries VPN prefixes
- Hierarchical Route Reflector
 - Local RR \rightarrow Regional RR \rightarrow Continental RR

ROUTE DEFLECTION

• Following setup will cause infinite routing loop between R3 and R4 for destination 203.0.113.0/24.

QUESTIONS & ANSWERS

Thank you for your attention! If you have any questions, please feel free to ask!