MIKROTIK CERTIFIED IPV6 ENGINEER BOOTCAMP

> *i*-BEAM steering ahead

YANGON, MYANMAR

#### Lay Minh (Makito)

CCIE # 47682, MikroTik Certified Trainer, MikroTik Consultant May 13 – 15, 2017

#### About Me

#### Lay Minh (Makito)

- MikroTik Certified Trainer & Consultant
- Chief Technology Officer @ i-BEAM
- Experiences:
  - o 12 years in ISP industry since 2005
  - Billing solutions for service providers
  - ISP core network design and operations

#### Certifications:





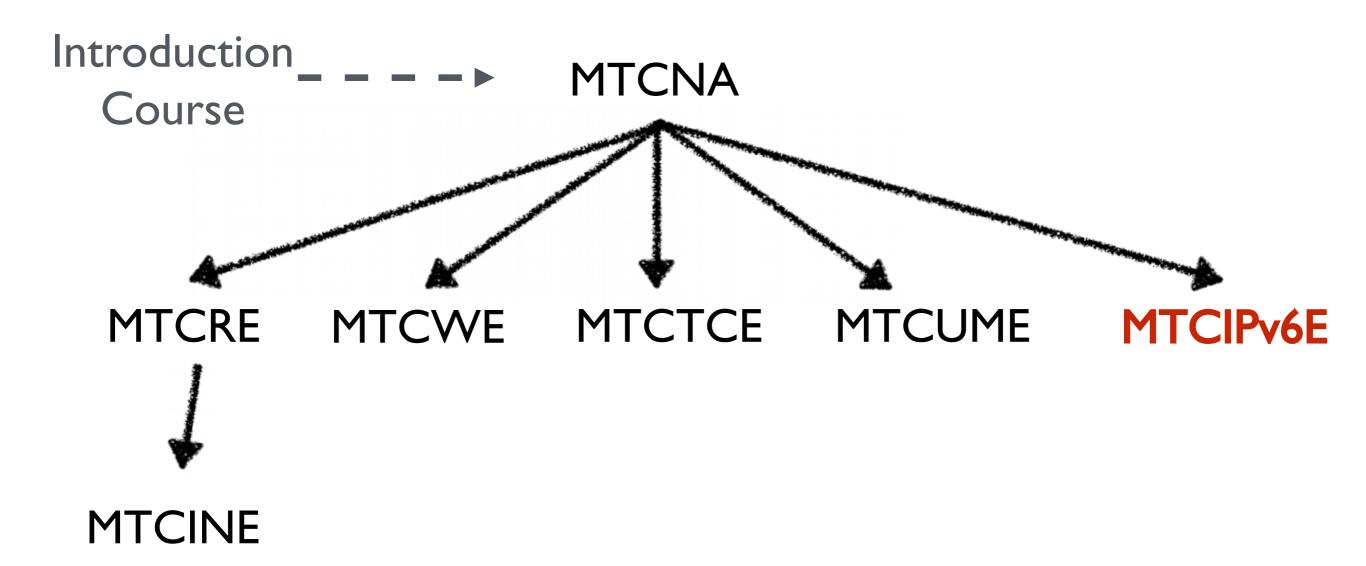


Areas of interest: BGP, MPLS, IPv6

## Course Objectives

- Provide an overview of IPv6, most common transition mechanisms and how to implement it on RouterOS
- Hands-on training for MikroTik RouterOS IPv6 configuration, maintenance and troubleshooting




## Learning Outcomes

The student will:

- Be able to configure, manage and do basic troubleshooting of an IPv6 network on a MikroTik RouterOS device
- Be able to provide IPv6 services to clients
- Have a solid foundation and valuable tools to manage an IPv6 network



### MikroTik Certified Courses



For more info see: training.mikrotik.com



## MTCIPv6E Outline

- Module I: Introduction to IPv6
- Module 2: IPv6 Protocol
- Module 3: IPv6 Packet
- Module 4: IPv6 Security
- Module 5: Transition Mechanisms
- Module 6: Interoperability



### Schedule

- Training day: 9AM 5PM
- Break time at the end of each module
- I.5 hour lunch: I2:30PM 2PM
- Certification test: last day, I hour



## Housekeeping

- Emergency exits
- Bathroom location
- Food and drinks while in class
- Please set phone to 'silence' and take calls outside the classroom



## Introduce Yourself

- Your name and company
- Your prior knowledge about IPv6 networking
- Your prior knowledge about IPv6 in RouterOS
- What do you expect from this course?
- Please, note your number (XY): \_\_\_\_\_



# Mikrofik Certified IPv6 Engineer (MTCIPv6E) Module 0

Recap from MTCNA



## About MikroTik

- Router software and hardware manufacturer
- Products used by ISPs, companies and individuals
- Mission: to make Internet technologies faster, more powerful and affordable to a wider range of users



## About MikroTik

- 1996: Established
- 1997: RouterOS software for x86 (PC)
- 2002: First RouterBOARD device
- 2006: First MikroTik User Meeting (MUM)
  - Prague, Czech Republic
- 2015: Biggest MUM: Indonesia, 2500+



## About MikroTik

- Located in Latvia
- I60+ employees
- <u>mikrotik.com</u>
- <u>routerboard.com</u>





## MikroTik RouterOS

- Is the operating system of MikroTik RouterBOARD hardware
- Can also be installed on a PC or as a virtual machine (VM)
- Stand-alone operating system based on the Linux kernel



## RouterOS Features

- IPv6 support
- Full 802.11 a/b/g/n/ac support
- Firewall/bandwidth shaping
- Point-to-Point tunnelling (PPTP, PPPoE, SSTP, OpenVPN), DHCP/Proxy/HotSpot
- And many more... see: <u>wiki.mikrotik.com</u>

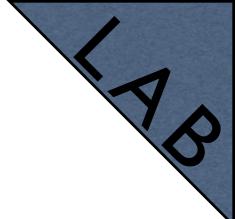


## MikroTik RouterBOARD

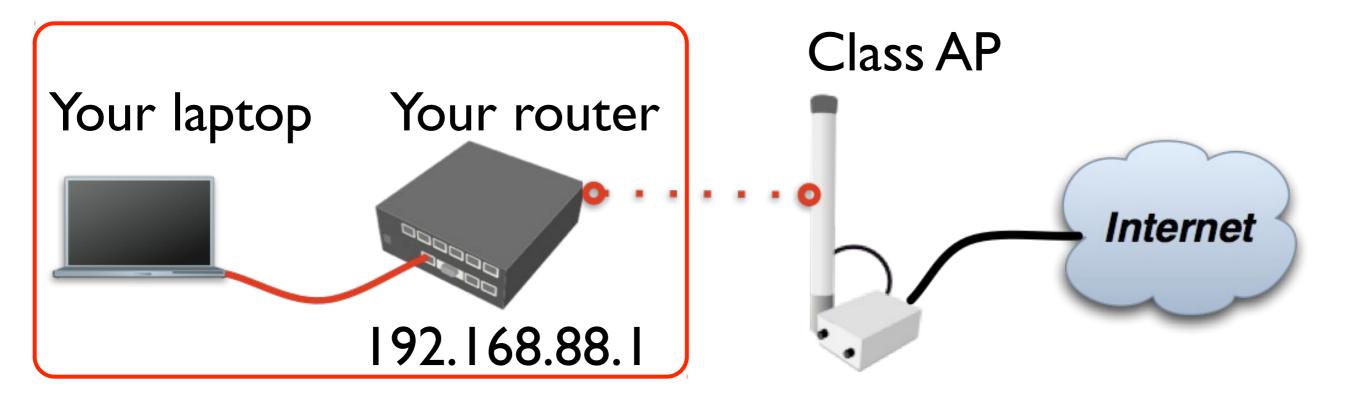
- A family of hardware solutions created by MikroTik that run RouterOS
- Ranging from small home routers to carrier-class access concentrators
- Millions of RouterBOARDs are currently routing the world



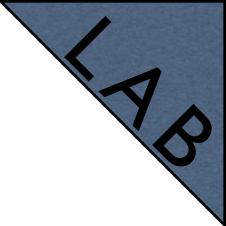



## MikroTik RouterBOARD

- Integrated solutions ready to use
- Boards only for assembling own system
- Enclosures for custom RouterBOARD builds
- Interfaces for expanding functionality
- Accessories



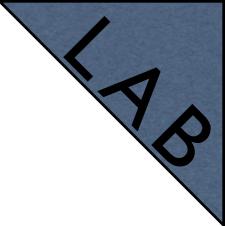


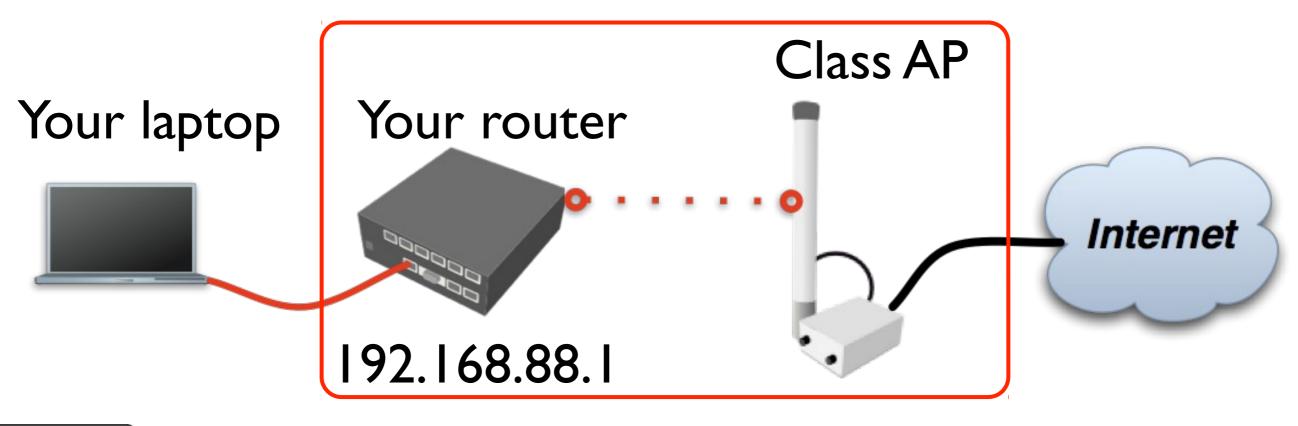



### Internet Access

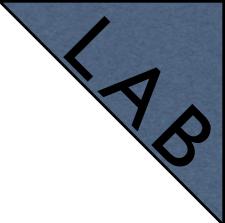






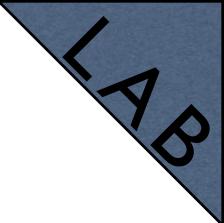


## Laptop - Router

- Connect laptop to the router with a cable, plug it in any of LAN ports (2-5)
- Disable other interfaces (wireless) on your laptop
- Make sure that Ethernet interface is set to obtain IP configuration automatically (via DHCP)



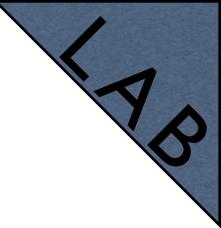



 The Internet gateway of your class is accessible over wireless - it is an access point (AP)







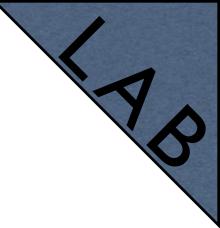


- To connect to the AP you have to:
  - Remove the wireless interface from the bridge interface (used in default configuration)
  - Configure **DHCP client** to the wireless interface



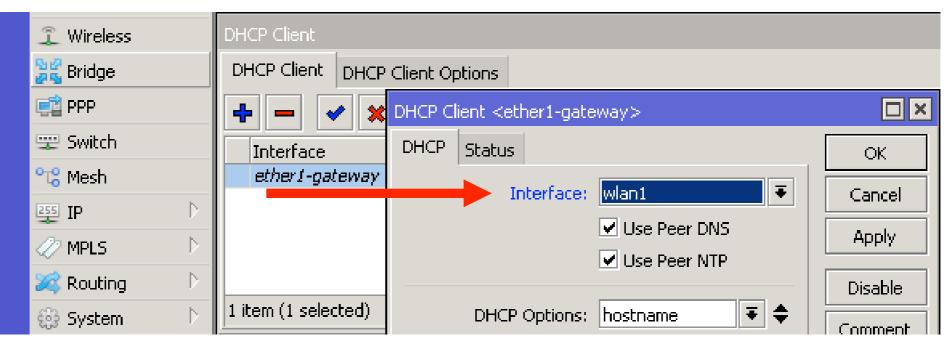


- To connect to the AP you have to:
  - Create and configure a wireless security profile
  - Set the wireless interface to **station** mode
  - And configure NAT masquerade



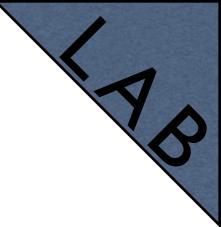



#### Remove the WiFi interface from the bridge


| 🔏 Quick Set   | Bridge                         |            |                   |                 |  |  |  |  |  |
|---------------|--------------------------------|------------|-------------------|-----------------|--|--|--|--|--|
| 🧘 CAPSMAN     | Bridge Ports Filters NAT Hosts |            |                   |                 |  |  |  |  |  |
| 🔚 Interfaces  | <b>+ - √ × </b>                |            |                   |                 |  |  |  |  |  |
| 🧘 Wireless    | Interface $\triangle$ Bridge   | Priority ( | Path Cost Horizon | Role            |  |  |  |  |  |
| 📲 Bridge      |                                |            | 10                | designated port |  |  |  |  |  |
|               | I #wlan1 bridge-loc            |            | 10                | disabled port   |  |  |  |  |  |
|               |                                |            |                   |                 |  |  |  |  |  |
| 🛫 Switch      |                                |            |                   |                 |  |  |  |  |  |
| °t¦8 Mesh     |                                |            |                   |                 |  |  |  |  |  |
| 255 IP 🕑      |                                |            |                   |                 |  |  |  |  |  |
| 🛷 MPLS 🛛 🕨    |                                |            |                   |                 |  |  |  |  |  |
| 🎉 Routing 🛛 🕨 |                                |            |                   |                 |  |  |  |  |  |
| 🍪 System 🗈    |                                |            |                   |                 |  |  |  |  |  |
| 🚳 Queues      | 2 items (1 selected)           |            |                   |                 |  |  |  |  |  |

Bridge Ports



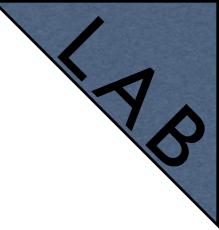



#### Set DHCP client to the WiFi interface



IP DHCP Client






Set Name and Pre-Shared Keys

| 🎢 Quick Set            | Wireless Tables         |                          |              |                   |              |
|------------------------|-------------------------|--------------------------|--------------|-------------------|--------------|
| I CAPSMAN              | Interfaces Nstreme Dual | Access List Registration | Connect List | Security Profiles | Channels     |
| 🛲 Interfaces           | New Security Profile    |                          |              |                   | ,            |
| 🤶 Wireless             | General RADIUS EAP S    | itatic Keys              |              | OK IS WPA         | Pre-Shared V |
| Pridge Bridge          |                         | : class                  |              | ****              |              |
| 📑 PPP                  |                         |                          |              | ancel             |              |
| 🛫 Switch               | Mode                    | e: dynamic keys          | ₹ A          | pply              |              |
| ଂଅ <mark>ଓ</mark> Mesh | Authentication Types    |                          |              | Copy              |              |
| 255 IP 🕨               |                         | WPA EAP WPA:             |              |                   |              |
| 🧷 MPLS 🛛 🗅             | Unicast Ciphers         | s: 🗹 aes ccm 📃 tkip      | Re           | move              |              |
| 🎉 Routing 🛛 🗈          | Group Ciphers           | s: 🗹 aes ccm 🗌 tkip      |              |                   |              |
| ණි System 🗅            | WPA Pre-Shared Key      | *****                    |              |                   |              |
| 🙊 Queues               | WPA2 Pre-Shared Key     |                          |              |                   |              |
| 📄 Files                | WPA2 Pre-Silareu Key    | e []                     |              |                   |              |
| 📄 Log                  | Supplicant Identity     | a 📃                      |              |                   |              |
| 🥵 Radius               |                         |                          |              |                   |              |
| 🎇 Tools 🛛 🗅            | Group Key Update        | :: 00:05:00              |              |                   |              |
| 📰 New Terminal         | Management Protection   | allowed                  | ₹            |                   |              |
| MahaD OLITED           | U                       | -                        |              |                   |              |

Wireless Security Profiles





Set Mode to 'station', SSID to 'ClassAP' and Security Profile to 'class'

| 🔏 Quick Set   | Wireless Tab                                                                                                                           | les        |         |           |      |              |                |             |         |          |               |   |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------|------------|---------|-----------|------|--------------|----------------|-------------|---------|----------|---------------|---|
| I CAPSMAN     | Interfaces                                                                                                                             | Nstreme    | e Dual  | Access I  | list | Registration | Connect List   | Security Pr | ofiles  | Channels |               |   |
| 🛲 Interfaces  | Interface <v< th=""><th>wlan1&gt;</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>×</th></v<> | wlan1>     |         |           |      |              |                |             |         |          |               | × |
| 🚊 Wireless    | General V                                                                                                                              | Vireless   | HT I    | HT MCS    | WDS  | Nstreme      | Advanced Statu | us Status   | Traffic | :        | <b></b>       | _ |
| 월월 Bridge     |                                                                                                                                        | · '        | _       |           |      |              |                |             |         | Ŧ        | ОК            |   |
| 📑 PPP         |                                                                                                                                        |            | ide: s  |           |      |              |                |             |         |          | Cancel        |   |
| 🛫 Switch      |                                                                                                                                        | Ba         | ind: 2  | GHz-B/G/I | N    |              |                |             |         | ₹        | Apply         |   |
| ଂଅଟି Mesh     | Ch                                                                                                                                     | annel Wio  | ith: 2  | :0/40MHz  | Се   |              |                |             |         | ₹        |               |   |
| 255 IP 🕨 🕨    |                                                                                                                                        | Frequen    | ncy: a  | iuto      |      |              |                |             | ₹       | MHz      | Disable       |   |
| 🖉 MPLC 💦 📐    |                                                                                                                                        | 55         | ID: C   | lassAP    |      |              |                |             |         |          | Comment       |   |
| 🎉 Routing 🛛 🗅 |                                                                                                                                        | Scan L     |         |           |      |              |                |             |         | ₹        | Advanced Mode |   |
| 🎲 System 🛛 🗅  |                                                                                                                                        |            |         |           |      |              |                |             | ]       |          | Torch         | = |
| 🙊 Queues      | Wirele                                                                                                                                 | ess Proto  | col: 8  | 02.11     |      |              |                |             |         | ₹        | TOPCH         |   |
| Files         | Sec                                                                                                                                    | urity Prof | file: c | lass      |      |              |                |             |         | ₹        | Scan          |   |
| Log           | E                                                                                                                                      | Bridge Mo  | ide: e  | nabled    |      |              |                |             |         | Ŧ        | Freq. Usage   |   |

#### Wireless Interfaces

• "Scan..." tool can be used to see and connect to available APs



## IPv6 on RouterOS

- IPv6 support is not enabled by default
- The package is included
- To enable go to System Packages
- Select 'ipv6' and click Enable
- Reboot the router
- New menu 'IPv6' will appear in WinBox



## IPv6 on RouterOS

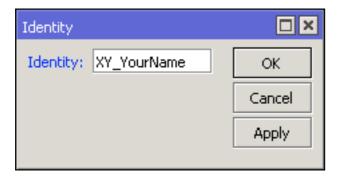
 RouterOS functions are enabled/disabled by packages. Enable 'ipv6' and reboot

| Check For Upd  | lates En | able Disable I   | Uninstall | Unschedule        | Downgrade | Check Installation | Find |
|----------------|----------|------------------|-----------|-------------------|-----------|--------------------|------|
| Name 🛛 🔺       | Version  | Build Time       | Sch       | eduled            |           |                    |      |
| 🗃 dude         | 6.36     | Jul/20/2016 14:0 | 9:10      |                   |           |                    |      |
| 😂 routeros-x86 | 6.36     | Jul/20/2016 14:0 | 9:10      |                   |           |                    |      |
| 🗃 advanced     | 6.36     | Jul/20/2016 14:0 | 9:10      |                   |           |                    |      |
| 🗃 dhop         | 6.36     | Jul/20/2016 14:0 | 9:10      |                   |           |                    |      |
| 🗃 hotspot      | 6.36     | Jul/20/2016 14:0 | 9:10      |                   |           |                    |      |
|                | 6.36     | Jul/20/2016-14:0 | )9:10 sch | eduled for enable |           |                    |      |
| 🗃 mpls         | 6.36     | Jul/20/2016 14:0 | 9:10      |                   |           |                    |      |
| 🗃 ррр          | 6.36     | Jul/20/2016 14:0 | 9:10      |                   |           |                    |      |
| 🗃 routing      | 6.36     | Jul/20/2016 14:0 | 9:10      |                   |           |                    |      |
| 🗃 security     | 6.36     | Jul/20/2016 14:0 | 9:10      |                   |           |                    |      |
| 🗃 system       | 6.36     | Jul/20/2016 14:0 | 9:10      |                   |           |                    |      |
| 🗃 ups          | 6.36     | Jul/20/2016 14:0 | 9:10      |                   |           |                    |      |
| 🗃 wireless-cm2 | 6.36     | Jul/20/2016 14:0 | 9:10      |                   |           |                    |      |

System Packages



## RouterOS Packages


| Package        | Functionality                                            |  |  |  |  |  |
|----------------|----------------------------------------------------------|--|--|--|--|--|
| advanced-tools | Netwatch, wake-on-LAN                                    |  |  |  |  |  |
| dhcp           | DHCP client and server                                   |  |  |  |  |  |
| hotspot        | HotSpot captive portal server                            |  |  |  |  |  |
| ipv6           | IPv6 support                                             |  |  |  |  |  |
| ррр            | PPP, PPTP, L2TP, PPPoE clients and servers               |  |  |  |  |  |
| routing        | Dynamic routing: RIP, BGP, OSPF                          |  |  |  |  |  |
| security       | Secure WinBox, SSH, IPsec                                |  |  |  |  |  |
| system         | Basic features: static routing, firewall, bridging, etc. |  |  |  |  |  |
| wireless       | 802.11 a/b/g/n/ac support, CAPsMAN v2, repeater          |  |  |  |  |  |

• For more info see <u>packages wiki page</u>



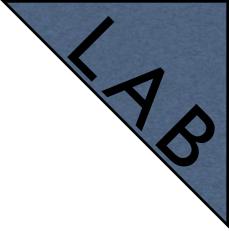
## Router Identity

- Option to set a name for each router
- Identity information available in different places



System Identity

XY YourName


6.33 (stable)

RB951Ui-2nD



192.168.88.1

D4:CA:6D:E2:65:90



## Router Identity

- Set the identity of your router as follows: YourNumber(XY)\_YourName
- For example: **I3\_JohnDoe**
- Observe the WinBox title menu



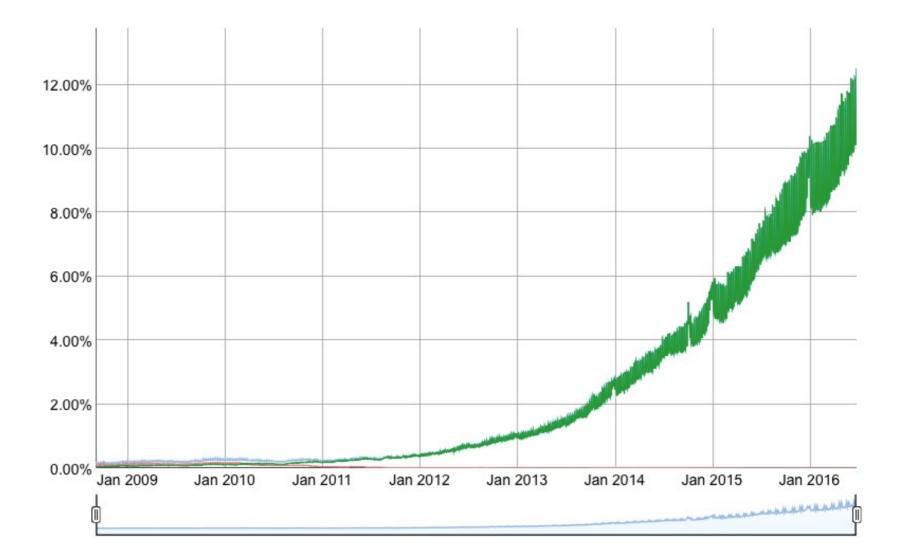
## Additional Information

- wiki.mikrotik.com RouterOS
   documentation and examples
- forum.mikrotik.com communicate with other RouterOS users
- <u>mum.mikrotik.com</u> MikroTik User Meeting page
- Distributor and consultant support



# Mikroik Certified IPv6 Engineer (MTCIPv6E) Module I

Introduction to IPv6




### IPv6

- Internet Protocol version 6
- Designed as the successor to IPv4
- Development started in 1996
- First IPv6 specification in 1998 (<u>RFC 2460</u>)



### IPv6 Adoption



Current numbers according to Google can be seen here



## Comparison

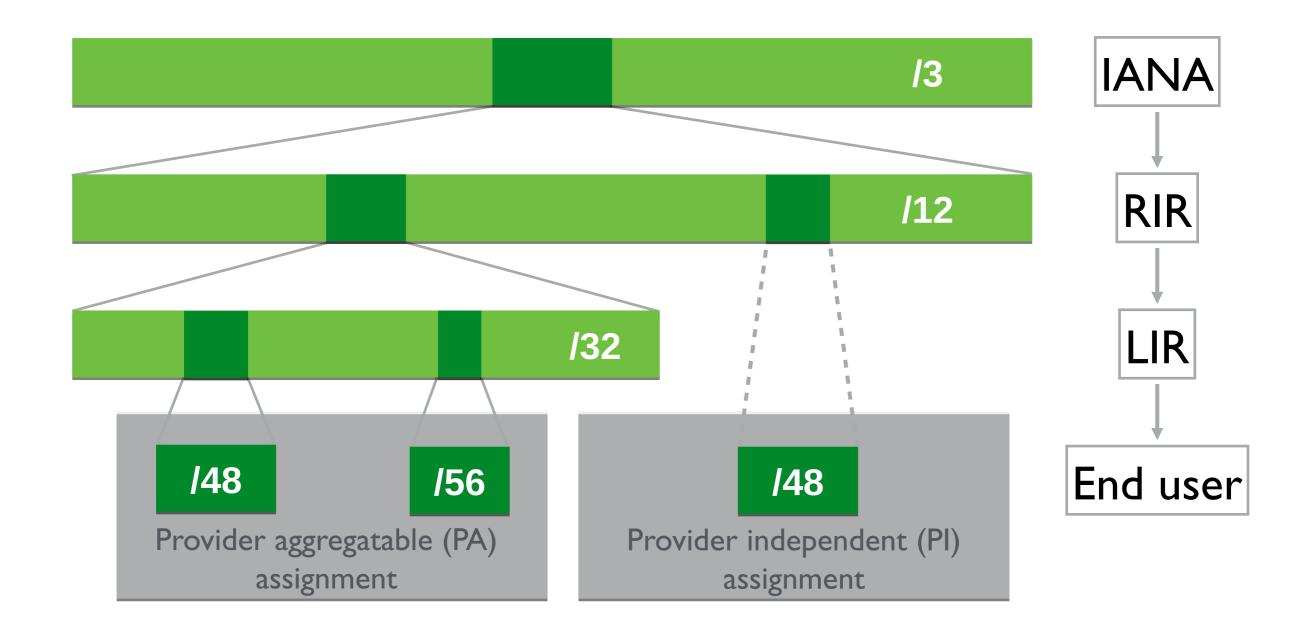
|                    | IPv4                   | IPv6                 |  |
|--------------------|------------------------|----------------------|--|
| Address space      | 32 bits                | 128 bits             |  |
| Possible addresses | <b>2</b> <sup>32</sup> | 2 <sup>128</sup>     |  |
| Address format     | 192.0.2.1              | 2001:db8:3:4:5:6:7:8 |  |
| Header length      | 20bytes                | 40bytes              |  |
| Header fields      | 14                     | 8                    |  |
| IPsec              | optional               | SHOULD*              |  |



### IPsec on IPv6

 IPv6 Node Requirements (<u>RFC6434</u>) states that all IPv6 nodes SHOULD support IPsec

SHOULD - means that there may exist valid reasons in particular circumstances to ignore a particular item, but the full implications must be understood and carefully weighed before choosing a different course




## Terminology

- node a device that implements Internet protocol (IP)
- router a node that forwards IP packets not explicitly addressed to itself
- host any node that is not a router
- <u>RFC4861 Terminology</u>



### Address Distribution







- IPv6 consists of 8 fields each 16 bits long
- Written in hexadecimal numerals (base 16)
- Separated by a colon ":"

#### 2001:0db8:1234:5678:9abc:def0:1234:5678



| Field<br>(16 bits) | Hexadecimal | Binary              |
|--------------------|-------------|---------------------|
| 1                  | 2001        | 0010 0000 0000 0001 |
| 2                  | 0db8        | 0000 1101 1011 1000 |
| 3                  | 0be0        | 0000 1011 1110 0000 |
| 4                  | 75a1        | 0111 0101 1010 0001 |
| 5                  | 0000        | 0000 0000 0000 0000 |
| 6                  | 0000        | 0000 0000 0000 0000 |
| 7                  | 0000        | 0000 0000 0000 0000 |
| 8                  | 0001        | 0000 0000 0000 0001 |

#### 2001:0db8:0be0:75a1:0000:0000:0000:0001



#### 2001:0db8:0be0:75a2:0000:0000:0000:0001

Leading zeros can be left out 2001:db8:be0:75a2:0:0:1

Consecutive fields of zeros can be replaced with ::

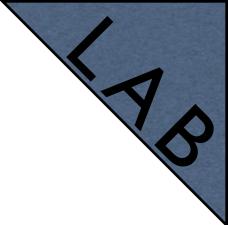
#### 2001:db8:be0:75a2::1



#### 2001:0db8:0000:0000:0010:0000:00010:0000

If there are several consecutive fields of zeros only one can be replaced with ::

#### 2001:db8::10:0:0:1


You can choose which one

2001:db8:0:0:10::1

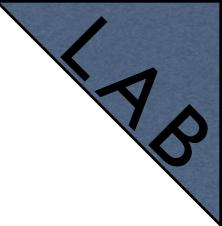
The same IP address. Both notations are valid but the first one is recommended

For more info see " <u>A Recommendation for IPv6 Address Text Repr</u> <u>esentation (RFC5952)</u>





Compress the following IPv6 addresses to shortest form possible


2001:0db8:0ab0:0d00:0000:0000:0000:0c01

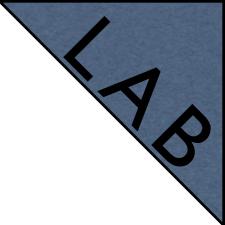
2001:0db8:0000:4c05:0000:0000:05ad:0bb1

2001:0db8:0000:0000:1234:0000:0000:da61

Answers are on the next slide






2001:db8:ab0:d00::c01

2001:db8:0:4c05::5ad:bb1

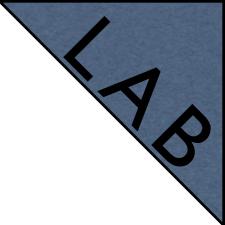
2001:db8::1234:0:0:da61

or 2001:db8:0:0:1234::da61





Expand the following IPv6 addresses to full notation


2001:db8:ab::bc0:c1ab

2001:db8:a000:c05:b0::1

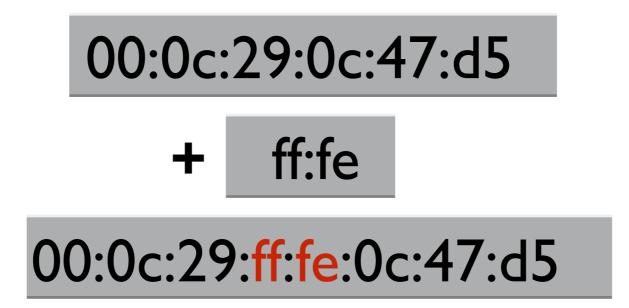
2001:db8:0:1234::61

Answers are on the next slide





#### 2001:0db8:00ab:0000:0000:0000:0bc0:c1ab


#### 2001:0db8:a000:0c05:00b0:0000:00001

#### 2001:0db8:0000:1234:0000:0000:0000:0001



### EUI-64

- 64-bit extended unique identifier (EUI)
- Derived from 48-bit MAC address





### Modified EUI-64

- Used in stateless address autoconfiguration (SLAAC)
- 7th bit from the left, the universal/local (U/L) bit, needs to be inverted



### Modified EUI-64

IPv6 prefix

#### 2001:db8:be0:75a2::/64

#### and modified EUI-64 from MAC address

#### 02:0c:29:ff:fe:0c:47:d5

Results in the following IPv6 address

2001:db8:be0:75a2:020c:29ff:fe0c:47d5



## SLAAC Address Construction

| Routing prefix | Subnet identifier | Interface identifier |
|----------------|-------------------|----------------------|
| 0-64 bits      | 0-64 bits         | 64 bits              |

- Routing prefix + subnet identifier = 64 bits
- /64 is the smallest prefix that can be assigned to a customer
- Usually a customer is assigned /48 /64 subnet



## Subnetting

#### 2001:0db8:0be0:75a2:0000:0000:0000:0001

Routing prefix: 48 bits

Subnet: 16 65536 x /64

#### 2001:0db8:0be0:75a2:0000:0000:0000:0001

Routing prefix: 52 bits

4096 x /64

#### 2001:0db8:0be0:75a2:0000:0000:0000:0001

8

12

Routing prefix: 56 bits

256 x /64

#### 2001:0db8:0be0:75a2:0000:0000:0000:0001

Routing prefix: 60 bits

16 x /64



4

## Address Types

| Туре           | Range     |
|----------------|-----------|
| Link local     | fe80::/10 |
| Global unicast | 2000::/3  |
| Multicast      | ff00::/8  |
| Unique local   | fc00::/7  |



### Special Addresses

| Туре                | Range                  |  |
|---------------------|------------------------|--|
| Loobpack            | ::1/128                |  |
| Documentation       | 2001:db8::/32          |  |
| 6to4                | 2002::/16              |  |
| Unspecified address | ::/128                 |  |
| Teredo              | 2001::/32              |  |
| Anycast             | 2001:db8:db1b:1e3::/64 |  |



## Unique Local Address

- Meant to <u>never</u> be used on the Internet
- fc00::/7 prefix is reserved for ULA
- Divided into fc00::/8 and fd00::/8
- fd00::/8 currently is the only valid ULA prefix
  - fc00::/8 prefix has not been defined



### Anycast Address

- Multiple hosts can have the same anycast address
- Send to any one member of this group (usually the nearest)
- Indistinguishable from a unicast address



### Anycast Address

- Use cases: load balancing, content delivery networks (CDN)
- When using anycast address, Duplicate Address Detection has to be disabled for that IP

[admin@MikroTik] > /ipv6 address set no-dad=yes numbers=1



## IPv4-mapped IPv6 address

- IPv6 address that holds an embedded IPv4 address
- Is used to represent the addresses of IPv4 nodes as IPv6 addresses

| IPv4 address | IPv4-mapped IPv6 address |  |
|--------------|--------------------------|--|
|              | ::ffff:   92.0.2.   23   |  |
| 192.0.2.123  | ::ffff:c000:027b         |  |



### Connecting to Global IPv6 host

| WinBox v3.4 (Addresses)            |       |
|------------------------------------|-------|
| File Tools                         |       |
| Connect To: [2001:db8:be0:75a1::1] |       |
| http://[2001:db8:be0:75a1::1]      | 0 0 + |

scp supout.rif admin@[2001:db8:be0:75a1::1]:

[admin@MikroTik] > /ping 2001:db8:be0:75a1::1

ping6 2001:db8:be0:75a1::1

Depending on the context IPv6 address is written with or without brackets



## IPv6 Connectivity

- Link-local address can be used to connect when the device has no globally routed IPv6 address
- Alternative to MAC WinBox

| Managed Neighbors |                           |   |          |                    |                |
|-------------------|---------------------------|---|----------|--------------------|----------------|
| Refresh           |                           |   |          | Fin                | d all Ŧ        |
| MAC Address       | IP Address                | A | Identity | Version            | Board 🛛 🗸 🔻    |
| 4C:5E:0C:6B:DC:B1 | fe80::4e5e:cff:fe6b:dcb1  |   | 3B17-S1  | 6.36rc28 (testing) | CCR1009-8G-15  |
| 4C:5E:0C:6B:E1:ED | fe80::4e5e:cff:fe6b:e1ed  |   | MikroTik | 6.34.1 (stable)    | CCR1009-8G-15  |
| D4:CA:6D:FA:D1:02 | fe80::5017:86ff:fe30:3d0c |   | MikroTik | 6.34.1 (stable)    | CRS125-24G-15  |
| E4:8D:8C:49:3D:00 | fe80::e68d:8cff:fe49:3d00 |   | hapac    | 6.34.1 (stable)    | RB962UiGS-5Hac |

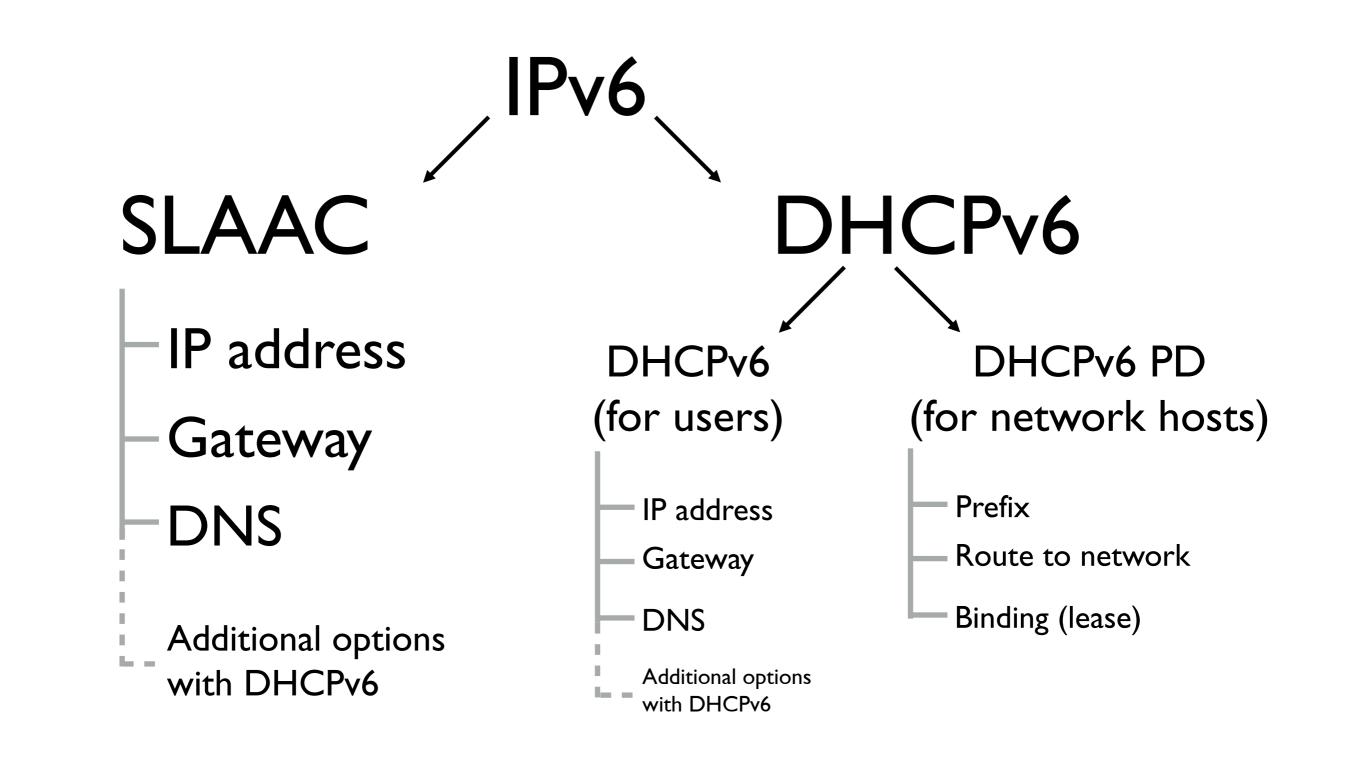
WinBox Neighbors



## Module I Summary



# Mikrofik Certified IPv6 Engineer (MTCIPv6E) Module 2


IPv6 Protocol



## Address Configuration

- Auto configuration of link local address
- Stateless
  - Stateless address autoconfiguration (SLAAC)
  - Additional options with DHCPv6
- Stateful
  - DHCPv6
- Static







## Neighbor Discovery

- Neighbor discovery (ND) protocol
- Replaces ARP on IPv4
- Tracks and discovers other IPv6 hosts
- Auto-configures address
- Uses ICMPv6 protocol



## Neighbor Discovery

- Has 5 message types:
  - Router solicitation (type 133)
  - Router advertisement (type 134)
  - Neighbor solicitation (type 135)
  - Neighbor advertisement (type 136)
  - Redirect (type 137)



### Link Local

• Ist step is to generate link local (LL) address

fe80::

+ Ir

Interface ID (Modified EUI-64)

• 2nd: perform 'neighbor solicitation'

A: This is my IPv6 address, is this in use? What's your MAC address?

#### 3rd: 'neighbor advertisement'

B:Yes, I'm using this address. My MAC is 12:34:56:78:90:12

If nobody answers, host uses generated LL address



### SLAAC

- Stateless address autoconfiguration
- Uses router solicitation and router advertisement messages
- Asks for a router
- Receives the address of the router and IP configuration



- If necessary additional configuration can be obtained (for example static routes)
- It is done by DHCPv6
- To configure open IPv6 ND



| ND <all></all>  |                |                  |          |         |
|-----------------|----------------|------------------|----------|---------|
| Inter           | face: bridge1  |                  | ₹        | ОК      |
| RA Inte         | erval: 200-600 |                  | s        | Cancel  |
| RA D            | elay: 3        |                  | s        | Apply   |
|                 | MTU:           |                  | <b>•</b> | Disable |
| Reachable       | Time:          |                  | ▼ s      | Сору    |
| Retransmit Inte | rval:          |                  | ▼ s      | Remove  |
| RA Life         | time: 1800     |                  | ▲ s      | Romore  |
| Нор             | Limit:         |                  | -        |         |
|                 | 🗸 Advert       | ise MAC Address  |          |         |
|                 | 🗹 Advert       | ise DNS          |          |         |
|                 | 🗌 Manage       | ed Address Confi | guration |         |
|                 | ✓ Other (      | Configuration    |          |         |
| enabled         |                | default          |          |         |
|                 | Pv6 I          | ND '             | edit'    |         |

 Configure required interfaces and enable "Other Configuration"



| New DHCPv6 Sei | rver        |         |
|----------------|-------------|---------|
| Name:          | server1     | ОК      |
| Interface:     | bridge1     | Cancel  |
| Address Pool6: | ▼           | Apply   |
| Lease Time:    | 3d 00:00:00 | Disable |
|                |             | Comment |
|                |             | Сору    |
|                |             | Remove  |
| enabled        |             |         |
| IPv6           | DHCPv6      | ·+'     |

Add new DHCP server on an interface



- Note: For MS Windows clients it is necessary to configure DHCPv6 in order to obtain DNS configuration
- Make sure, that IPv6 DNSserver is configured in IP DNS

| DNS Settings          |                       | ×□     |
|-----------------------|-----------------------|--------|
| Servers:              | 2001:db8:be0:75a2::1  | ОК     |
| Dynamic Servers:      |                       | Cancel |
|                       | Allow Remote Requests | Apply  |
| Max UDP Packet Size:  | 4096                  | Static |
| Query Server Timeout: | 2.000 s               | Cache  |
| Query Total Timeout:  | 10.000 s              |        |
| Cache Size:           | 2048 KiB              |        |
| Cache Max TTL:        | 1d 00:00:00           |        |
| Cache Used:           | 185                   |        |
|                       |                       |        |





### IPv6 Routing

- Works similar like IPv4 classless routing
- Subnet size can be arbitrary
- SLAAC works only with /64 prefixes

| IPv6 R  | IPv6 Route List   |                                            |              |  |  |  |
|---------|-------------------|--------------------------------------------|--------------|--|--|--|
| +       |                   |                                            |              |  |  |  |
|         | Dst. Address      | Gateway                                    | Distance 🔹 🔻 |  |  |  |
| DAS     | ►::/0             | fe80::e68d:8cff:febd:ea3a%ether1 reachable | 1            |  |  |  |
| DASU    | 2001:db8:be0::/56 |                                            | 1            |  |  |  |
| DAC     | 2001:db8:be0::/64 | bridge1 reachable                          | 0            |  |  |  |
|         |                   |                                            |              |  |  |  |
| 3 items |                   |                                            |              |  |  |  |

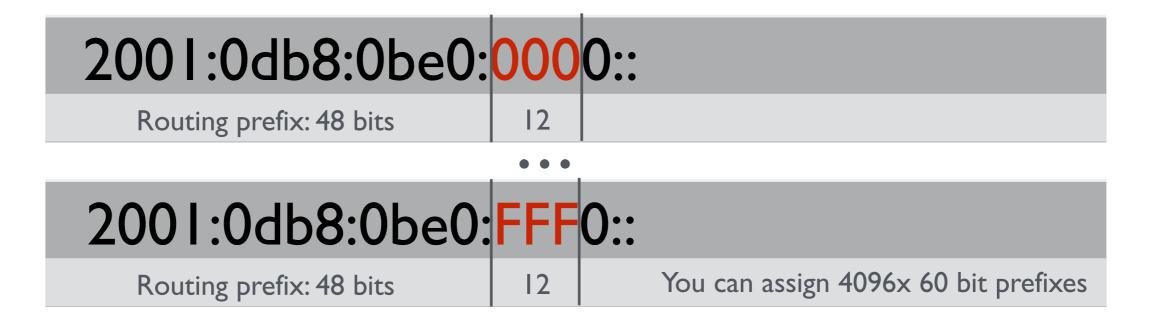
IPv6 Routes



### IPv6 Routing

|                 | IPv6            | IPv4      |
|-----------------|-----------------|-----------|
|                 | 0:0:0:0:0:0:0/0 |           |
| Default gateway |                 | 0.0.0.0/0 |
|                 | ::/0            |           |
|                 | 2000::/3        |           |

Several ways how to write default gateway



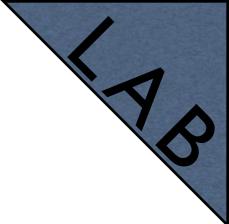

### IPv6 Subnetting

- You have been assigned /48 block
- You're planning to assign /60 to your customers
- 2<sup>12</sup> = 4096 /60 subnets
- Each of your customers will have 16x /64 prefixes for their devices



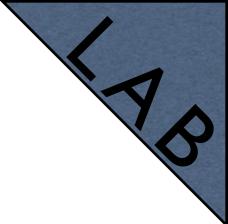
## IPv6 Subnetting







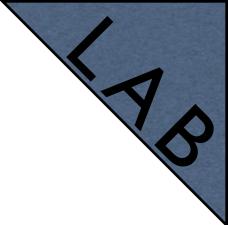

### IPv6


- It is possible to split /64 prefix even further
- SLAAC requires /64 prefix length
- If the prefix is split beyond /64 will have to use DHCPv6 or static configuration
- Simpler devices might not support DHCPv6 (only SLAAC)



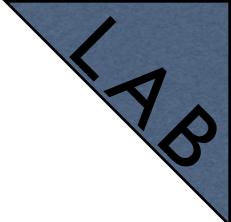


- The trainer now will give you an IPv6 address
- Configure it on your router's external interface (the same that already has public IPv4 address)
- Uncheck 'Advertise'
- From your router try to ping trainer's router IPv6 address





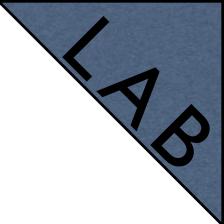

| New IPv6 A | ddress           |        |         |
|------------|------------------|--------|---------|
| Address:   | 2001:db8:be0:cd: | :1/64  | OK      |
| From Pool: |                  | •      | Cancel  |
| Interface: | wlan1            | ₹      | Apply   |
|            | EUI64            |        | Disable |
|            | Advertise        |        | Comment |
|            |                  |        | Сору    |
|            |                  |        | Remove  |
| enabled    |                  | Global |         |
| enabled    |                  | Global |         |


IPv6 Addresses '+'





- The trainer now will give you an IPv6 prefix which to use for your clients
- Add it as an IPv6 pool
- Add an IP address on the bridge interface from the pool
- Enable IPv6 on your laptop
- It should receive an IPv6 prefix via SLAAC






- For example, the prefix is
  - 2001:db8:2162:8450::/60
  - Your laptop and other devices will receive /64 prefix

| New IPv6 Pool  |                         |        |
|----------------|-------------------------|--------|
| Name:          | mypool                  | ОК     |
| Prefix:        | 2001:db8:2162:8450::/60 | Cancel |
| Prefix Length: | 64                      | Apply  |
| Expire Time:   |                         | Сору   |
|                |                         | Remove |
|                |                         |        |



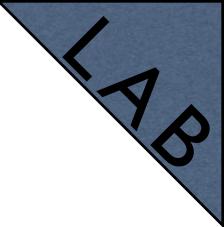


- Choose an IP address from the pool, for example 2001:db8:2162:8450::1/64
- Configure it on the bridge interface
- Enable 'Advertise'

| IPv6 Address | <2001:db8:2162:  | 8450::/64> |         |
|--------------|------------------|------------|---------|
| Address:     | 2001:db8:2162:84 | 50::1/64   | ОК      |
| From Pool:   | mypool           | ₹ ▲        | Cancel  |
| Interface:   | bridge1          | ₹          | Apply   |
|              | EUI64            |            | Disable |
| Advertise    |                  | Comment    |         |
|              |                  |            | Сору    |
|              |                  |            | Remove  |
| enabled      |                  | Global     |         |
|              |                  |            |         |

IPv6 Addresses '+'



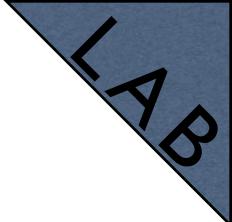



 The trainer now will give you an IPv6 address of the DNS server to use

| DNS Settings          |                       |     |        |
|-----------------------|-----------------------|-----|--------|
| Servers:              | 2001:db8:1234:4567::1 | \$  | ОК     |
| Dynamic Servers:      |                       |     | Cancel |
|                       | Allow Remote Request  | s   | Apply  |
| Max UDP Packet Size:  | 4096                  |     | Static |
| Query Server Timeout: | 2.000                 | s   | Cache  |
| Query Total Timeout:  | 10.000                | s   |        |
| Cache Size:           | 2048                  | KiB |        |
| Cache Max TTL:        | 7d 00:00:00           |     |        |
| Cache Used:           | 10                    |     |        |








- Enable "Advertise DNS" in IPv6 ND
- Linux and macOS should already have fully working IPv6
- If you're using Windows, enable "Other configuration" flag

| ND <all></all>       |                               |         |
|----------------------|-------------------------------|---------|
| Interface:           | all 🔻                         | ОК      |
| RA Interval:         | 200-600 s                     | Cancel  |
| RA Delay:            | 3s                            | Apply   |
| MTU:                 | <b>▼</b>                      | Disable |
| Reachable Time:      | ▼ s                           | Сору    |
| Retransmit Interval: | ▼ s                           | Remove  |
| RA Lifetime:         | 1800 🔺 s                      |         |
| Hop Limit:           | ▼                             |         |
|                      | Advertise MAC Address         |         |
|                      | Advertise DNS                 |         |
|                      | Managed Address Configuration |         |
|                      | Other Configuration           |         |
| enabled              | default                       |         |
|                      |                               |         |

IPv6 ND 'edit'





- Enable IPv6 on your laptop
- Try to ping the router's IP address from your laptop (using ping6 command)
- Try to ping <u>www.mikrotik.com</u> IPv6 address (2a02:610:7501:1000::2)



## Module 2 Summary



# Mikrofik Certified IPv6 Engineer (MTCIPv6E) Module 3

IPv6 Packet



|                                    | Version<br>(4 bits) | Traffic class<br>(8 bits)   |   | Flow label<br>(20 bits) |                       |
|------------------------------------|---------------------|-----------------------------|---|-------------------------|-----------------------|
|                                    |                     | Payload length<br>(16 bits) |   | Next header<br>(8 bits) | Hop limit<br>(8 bits) |
|                                    |                     |                             |   | address<br>bits)        |                       |
|                                    |                     |                             |   | on address<br>bits)     |                       |
| <i>Мікто<b>тік</b></i><br>MTCIPv6E |                     |                             | 8 | 9                       |                       |

- Version always contains '6' (0110 in binary)
- Traffic class holds 2 values.
  - 6 most significant bits to classify packets for QoS
  - 2 remaining bits for Explicit Congestion Notification (ECN) where supported



- Flow label used to maintain packet sequence
- Payload length Length of the IPv6 payload, i.e., the rest of the packet following this IPv6 header, in octets
- Next header Identifies the type of header immediately following the IPv6 header



- Hop limit Decremented by I by each router that forwards the packet. The packet is discarded if hop limit is 0
- Source address address of the originator of the packet
- **Destination address** address of the intended recipient of the packet



- Length: fixed size 40 bytes (320 bits)
- Field count: 8
- Simplified in comparison to IPv4



### Next Header Field

- IPv6 header has fixed size
- Optional information is encoded in separate extension headers
- Situated between the IPv6 and the upperlayer headers
- Each Next Header is identified by a distinct value



### Next Header Field

IPv6 packet may carry zero, one, or more extension headers

| Extension Header               | Value |
|--------------------------------|-------|
| Hop-by-Hop Options             | 0     |
| Fragment                       | 44    |
| Routing (Type 0)               | 43    |
| <b>Destination Options</b>     | 60    |
| Authentication                 | 51    |
| Encapsulating Security Payload | 50    |



### Fragmentation

- Performed only by source nodes
- Fragment header is identified by a Next Header value of 44
- For every packet the source node generates an identification value
- ID must be different than any other fragmented packet sent recently with the same Src and Dst Address



### Fragmentation

- The packet consists of "unfragmentable" and "fragmentable" parts
- Unfragmentable = IPv6 header + extension headers that must be processed by routers en route to the destination
- Fragmentable = the rest of the packet



#### Path MTU

- Path MTU (PMTU) is the largest packet size that can traverse between a source and destination without fragmentation
- IPv6 requires MTU 1280 bytes or greater
  - IPv4 requires MTU 68 bytes



# Path MTU Discovery

- PMTU discovery is a technique for determining the path MTU between two IP hosts
- To discover and take advantage of PMTUs greater than 1280, it is strongly recommended to implement PMTU discovery
- For packets that are larger than PMTU fragmentation is used



# Module 3 Summary



# Mikroik Certified IPv6 Engineer (MTCIPv6E) Module 4

IPv6 Security



### ICMPv6

- ICMPv6 is an integral part of IPv6
- It is used to report errors encountered in processing packets, and to perform other functions, such as diagnostics
- There are 2 ICMPv6 message classes error (types 0-127) and information (types 128-255)



#### ICMPv6

| Туре | Meaning                 | Class       |  |
|------|-------------------------|-------------|--|
| 1    | Destination Unreachable | Error       |  |
| 3    | Time Exceeded           | Error       |  |
|      |                         |             |  |
| 128  | Echo Request            | Information |  |
| 129  | Echo Reply              | mornation   |  |
|      |                         |             |  |

ICMPv6 Message Types (example)



# Neighbor Discovery

- NDP uses 5 different ICMPv6 packet types:
  - Router solicitation (type 133)
  - Router advertisement (type 134)
  - Neighbor solicitation (type 135)
  - Neighbor advertisement (type 136)
  - Redirect (type 137)



# Neighbor Discovery

- Neighbor Discovery makes use of a number of different special addresses including:
  - Link-local scope address to reach all nodes (multicast address) - FF02:: I
  - Link-local scope address to reach all routers (multicast address) - FF02::2
  - And others, for more info see -<u>IPv6 Multicast Address Space Registry</u>



### Router Solicitation

- Hosts send Router Solicitations in order to prompt routers to generate Router
   Advertisements quickly rather than at their next scheduled time
- It is sent to all-routers multicast address



### Router Solicitation

- Source IP address assigned to the sending interface
- Or the unspecified address (::/128) if no address is assigned
- Destination typically the all-routers multicast address



### Router Advertisement

- Routers advertise their presence periodically, or in response to a Router Solicitation message
- A host receives Router Advertisements from all routers, building a list of default routers
- Various internet and link parameters are advertised such as prefixes, address configuration, MTU, etc.



### Router Advertisement

- Facilitates centralized administration of critical parameters, that can be set on routers and automatically propagated to all attached hosts
- Allow routers to inform hosts how to perform address autoconfiguration



#### Router Advertisement

- Routers can specify whether hosts should use DHCPv6 and/or autonomous (stateless) address configuration
- Contains source, link-local address assigned to the interface from which this message is sent



#### Router Advertisement

- Destination, typically the Source Address of an invoking Router Solicitation or the allnodes multicast address
- M: I-bit "Managed address configuration" flag
- O: I-bit "Other configuration" flag



## Neighbor Solicitation

- Nodes accomplish address resolution by multicasting a Neighbor Solicitation, that asks the target node to return its link-layer address
- To verify that a neighbor is still reachable
- The target returns its link-layer address in a unicast Neighbor Advertisement message



## Neighbor Solicitation

- A single request-response pair of packets is sufficient for both to resolve each other's link-layer addresses
- Neighbor Solicitation is also used for Duplicate Address Detection



## Neighbor Solicitation

- Contains source, either an address assigned to the interface from which this message is sent or (if Duplicate Address Detection is in progress) the unspecified address
- Destination, either the solicited-node multicast address corresponding to the target address, or the target address



### Neighbor Advertisement

- A response to a Neighbor Solicitation message
- A node may also send unsolicited Neighbor Advertisements in order to (unreliably) propagate new information quickly
- E.g. to announce a link-layer address change



### Neighbor Advertisement

- Source: an address assigned to the interface from which the advertisement is sent
- Destination: the Source Address of an invoking Neighbor Solicitation or the allnodes multicast address



#### Redirect

- Used by routers to inform hosts of a better first hop for a destination
- Hosts can also be informed by a redirect that the destination is in fact a neighbor
- Separate address resolution is not needed upon receiving a redirect



# Managed Address Configuration

- Router Advertisement I-bit M flag
- When set, it indicates that addresses are available via DHCPv6
- If the M flag is set, the O flag is redundant and can be ignored because DHCPv6 will return all available configuration information
- SLAAC will not be used



### Other Configuration

- Router Advertisement I-bit O flag
- When set, it indicates that other configuration information is available via DHCPv6
- E.g. DNS-related information (necessary for Windows clients)
- If neither M nor O flags are set, this indicates that no information is available via DHCPv6



### M and O Flags

|          | ND <all></all>       |                             |          |         |
|----------|----------------------|-----------------------------|----------|---------|
|          | Interface:           | bridge1                     | ₹        | ОК      |
|          | RA Interval:         | 200-600                     | s        | Cancel  |
|          | RA Delay:            | 3                           | s        | Apply   |
|          | MTU:                 |                             | •        | Disable |
|          | Reachable Time:      |                             | <b>s</b> | Сору    |
|          | Retransmit Interval: |                             | <b>s</b> | Remove  |
|          | RA Lifetime:         | 1800                        | ► s      |         |
|          | Hop Limit:           |                             | •        |         |
|          |                      | Advertise MAC Address       |          |         |
| M flag   |                      | Advertise DNS               |          |         |
|          |                      | 🔲 Managed Address Configura | tion     |         |
| O flag — |                      | Other Configuration         |          |         |
|          | enabled              | default                     |          |         |
|          | IPv                  | 6 ND 'e                     | dit'     | )       |



### Duplicate Address Detection (DAD)

- Using Neighbor Solicitation a node can determine whether or not an address it wishes to use is already in use
- DAD sends a message with an unspecified source address targeting its own "tentative" address



### Duplicate Address Detection (DAD)

- Such messages trigger nodes already using the address to respond with a multicast
   Neighbor Advertisement indicating that the address is in use
- If no response is received, the node uses the chosen address



## Neighbor Unreachability Detection (NUD)

- Communication to or through a neighbor may fail for numerous reasons at any time, including hardware failure, hot-swap of an interface card, etc.
- NUD detects the failure of a neighbor or the failure of the forward path to the neighbor



## Neighbor Unreachability Detection (NUD)

- NUD uses confirmation from two sources
- When possible, upper-layer protocols provide a positive confirmation that a connection is making "forward progress"



## Neighbor Unreachability Detection (NUD)

- When positive confirmation is not forthcoming, a node sends unicast Neighbor Solicitation messages that solicit Neighbor Advertisements as reachability confirmation from the next hop
- If node address changes NUD ensures that all nodes will reliably discover the new address



## Multicast Listener Discovery (MLD)

- MLDv2 is a translation of the IGMPv3 protocol for IPv6 semantics
- It is used by an IPv6 router to discover multicast listeners (nodes that wish to receive multicast packets) on directly attached links
- To discover which multicast addresses are of interest to those neighboring nodes



#### MLD

- The purpose of MLD is to enable each multicast router to learn, which multicast addresses and which sources have interested listeners
- Specifies multicast address listeners and multicast routers
- A node can subscribe to certain multicast messages



#### MLD

- One router becomes elected as the Querier
- It will gather and maintain information about listeners and their subscriptions
- If the router fails another router on the same subnet takes over the role



#### SEND

- If not secured, NDP is vulnerable to various attacks
- SEcure Neighbor Discovery (SEND) is a proposed standard which helps to mitigate possible threats
- For more info see <u>RFC3971</u>



# Special Addresses Lab

- Login to your router
- Open terminal and try to ping following IP addresses:
  - FF02::1 (all nodes)
  - FF02::2 (all routers)
- Observe the output



- Addresses generated using SLAAC contain an embedded interface identifier, which remains constant over time
- When a fixed identifier is used in multiple contexts, it becomes possible to correlate seemingly unrelated activity using this identifier



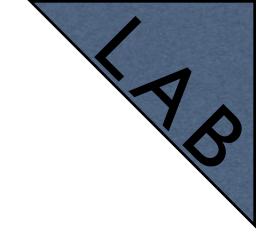
- For a "road warrior" who has Internet connectivity both at home and at the office, the interface identifier contained within the address remains the same
- Privacy Extensions for SLAAC in IPv6 ( <u>RFC4941</u>) suggests improvements to this behavior



- There are various implementations
- macOS and Windows10 generate new temporary IPv6 address every 24 hours
- Linux may create new temporary address for each new SSL/TLS connection

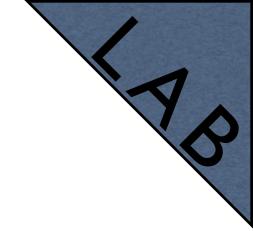


- Find out the temporary address(es) of your computer
- If you're using Linux/macOS, open terminal and use command ifconfig
- For Windows ipconfig



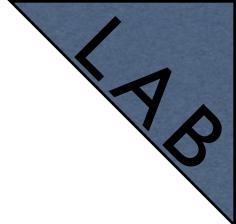

- RouterOS IPv6 Firewall is similar with IP Firewall
- RouterOS IPv6 Firewall implements same Filter and Mangle rules as with IPv4
- As well as Address Lists




- By default RouterOS IPv6 firewall does not have any filter rules
- Protect your router from outside






- Create following IPv6 Firewall rules:
  - Accept input for established and related packets (all interfaces)
  - Accept ICMPv6 from link local (LL) IP addresses (ff80::/10)
  - Accept ICMPv6 to link local (LL) IP addresses (ff80::/10)





- Create following IPv6 Firewall rules:
  - Drop input for everything else on external interface
  - Accept forward for established and related packets (all interfaces)
  - Drop forward for all traffic coming in through external interface





|                      | Pv6 Firewall                                      |          |         |              |              |                       |           |           |                |                |                     |           |          |
|----------------------|---------------------------------------------------|----------|---------|--------------|--------------|-----------------------|-----------|-----------|----------------|----------------|---------------------|-----------|----------|
| Filter               | Filter Rules Mangle Raw Connections Address Lists |          |         |              |              |                       |           |           |                |                |                     |           |          |
| ÷                    | 🕨 🗕 💉 🖾 🍸 00 Reset Counters 00 Reset a            |          |         |              |              | <b>00</b> Reset All ( | Counters  |           |                |                | Fin                 | d all     | ₹        |
| #                    | ,                                                 | Action   | Chain   | Src. Address | Dst. Address | Protocol              | Src. Port | Dst. Port | In. Interface  | Out. Interface | Connection State    | Bytes     | Packel 🔻 |
| 0                    |                                                   | 🖌 accept | input   |              |              |                       |           |           |                |                | established related | 8.2 MiE   | 91 930   |
| 1                    |                                                   | 🗸 accept | input   | fe80::/10    |              | 58 (icmpv6)           |           |           |                |                |                     | 141.0 KiE | 2 169    |
| 2                    |                                                   | 🗸 accept | input   |              | fe80::/10    | 58 (icmpv6)           |           |           |                |                |                     | 16.3 KiE  | 260      |
| 3                    |                                                   | 💢 drop   | input   |              |              |                       |           |           | ether1-gateway |                |                     | 731.2 KiE | 4 182    |
| 4                    |                                                   | 🗸 accept | forward |              |              |                       |           |           |                |                | established related | 31.1 MiE  | 60 788   |
| 5                    |                                                   | 💢 drop   | forward |              |              |                       |           |           | ether1-gateway |                |                     | 0 8       | 0        |
| 6 items (1 selected) |                                                   |          |         |              |              |                       |           |           |                |                |                     |           |          |

IPv6 Firewall Filter Rules



#### NAT

- There's no IPv6 Firewall NAT menu
- No need for NAT
  - There are plenty IPv6 addresses available
- One should not confuse NAT box with firewall - it does not provide security in itself
- See <u>RFC5902: IAB Thoughts on IPv6 NAT</u>



#### IPsec

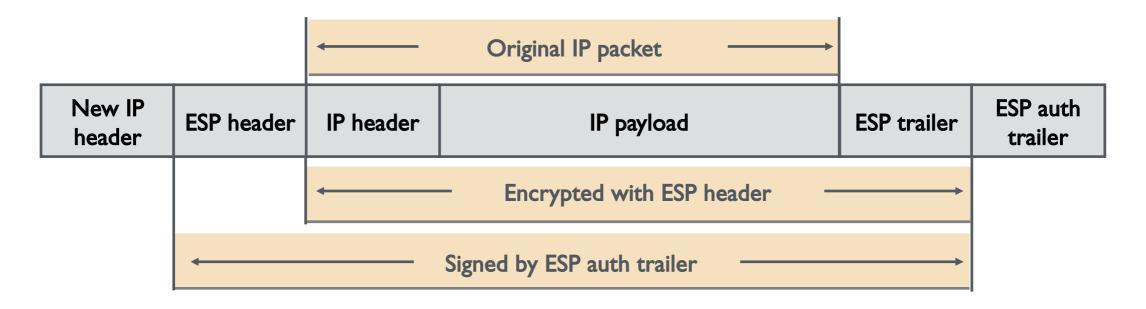
- Internet Protocol Security (IPsec) a set of protocols to support secure communication at the IP layer
- Originally developed for IPv6, later backported also to IPv4
- Provides encryption to the IP protocol
- Can be used both with IPv4 and IPv6



#### IPsec

- Multiple approaches can be used to implement IPsec:
  - Header only encryption (AH)
  - Data only encryption (ESP)
  - Header and data encryption (AH+ESP)
- ESP (packet data encryption) is the most widely used, the other two are used rarely

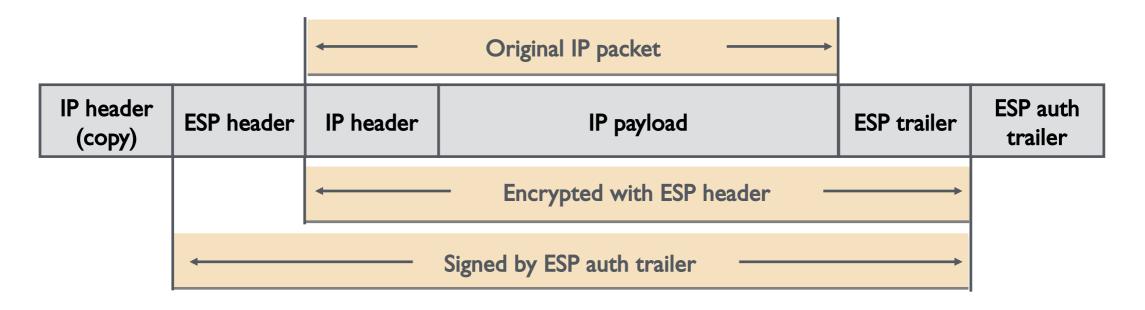



#### IPsec

- Can be configured to operate in two different modes:
  - Transport
  - Tunnel
- Both can be used to encrypt IPv6 traffic



#### Tunnel Mode


 The original packet is wrapped, encrypted, a new IP header is added and the packet is sent to the other side of the tunnel

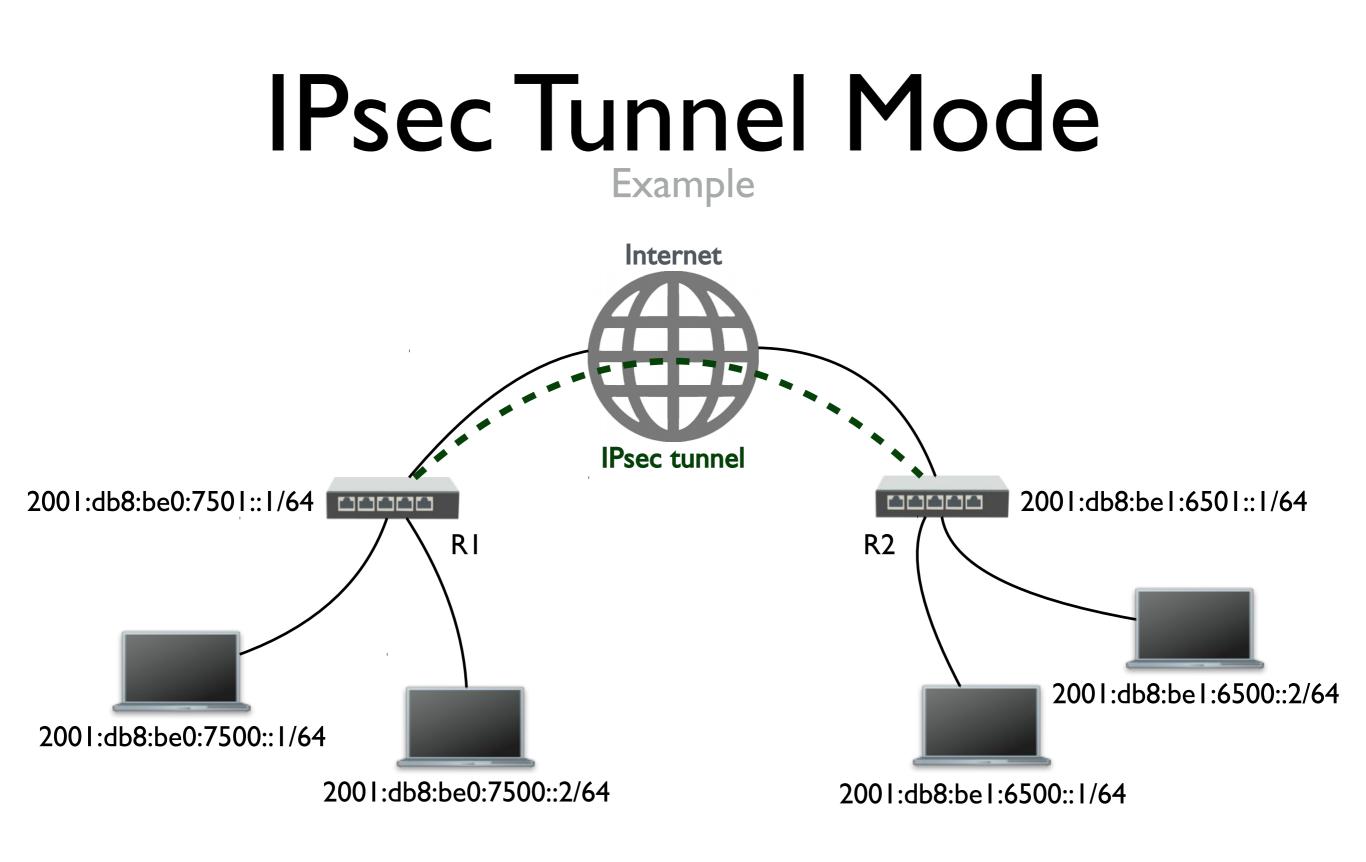




### Transport Mode

 The data of the packet is encrypted, but the header is sent in open clear text, IP header is copied to the front






# IPsec

 IPv6 Node Requirements (<u>RFC6434</u>) states that all IPv6 nodes SHOULD support IPsec

SHOULD - means that there may exist valid reasons in particular circumstances to ignore a particular item, but the full implications must be understood and carefully weighed before choosing a different course







#### • IPsec peer config

#### • RI

/ip ipsec peer add address=2001:db8:be1:6501::1 port=500
auth-method=pre-shared-key secret="test"

#### • R2

/ip ipsec peer add address=2001:db8:be0:7501::1 port=500
auth-method=pre-shared-key secret="test"



#### • IPsec default proposal on both routers

/ip ipsec proposal print

0 \* name="default" auth-algorithms=sha1 encalgorithms=aes-256-cbc,aes-192-cbc,aes-128-cbc lifetime=30m pfs-group=modp1024



#### IPsec policy config

#### • RI

/ip ipsec policy

```
add src-address=2001:db8:be0:7500::/64 src-port=any dst-
address=2001:db8:be1:6500::/64 dst-port=any \
```

```
sa-src-address=2001:db8:be0:7501::1 sa-dst-
address=2001:db8:be1:6501::1 \
```

```
tunnel=yes action=encrypt proposal=default
```

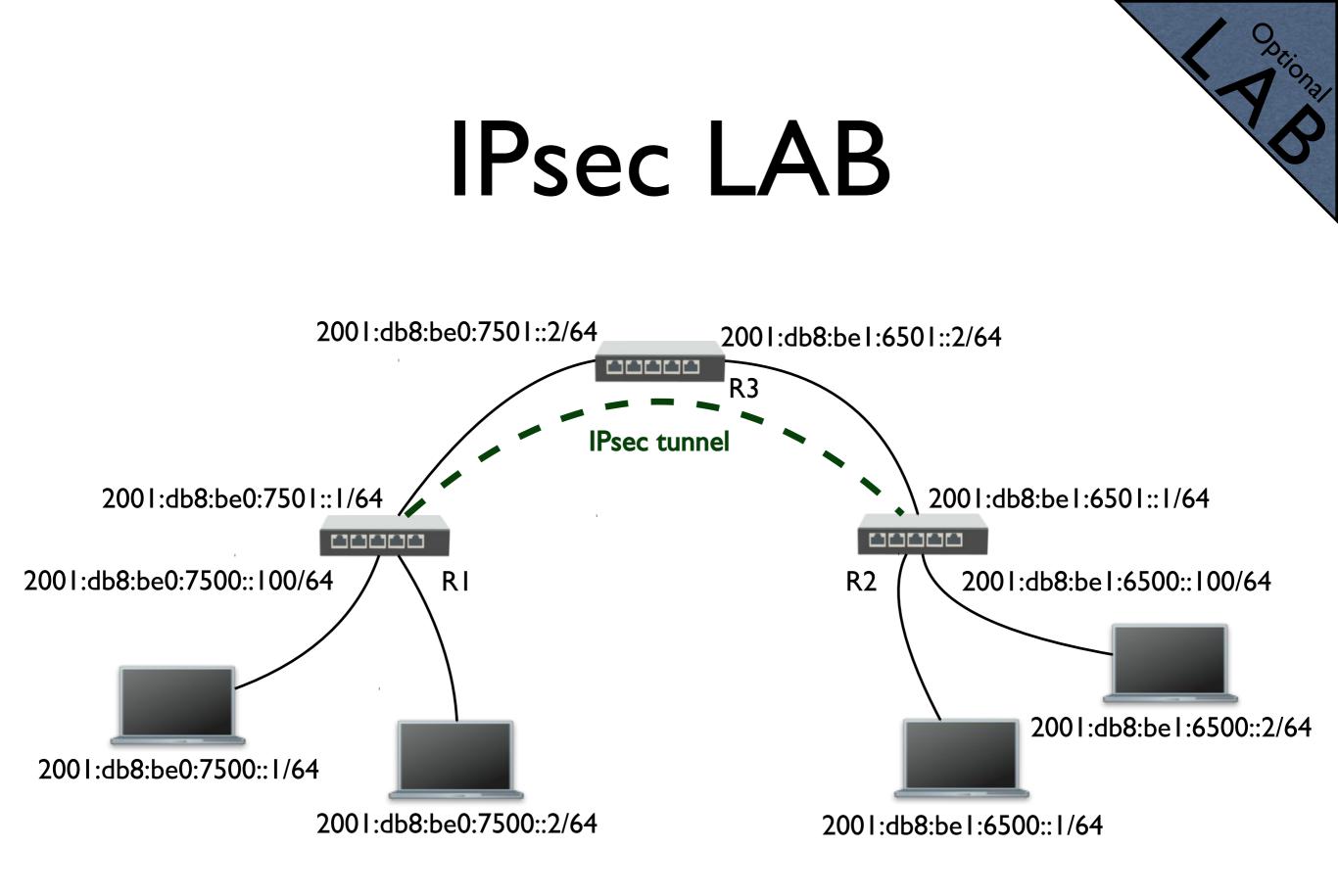


#### IPsec policy config

#### • R2

```
/ip ipsec policy
```

```
add src-address=2001:db8:be1:6500::/64 src-port=any dst-
address=2001:db8:be0:7500::/64 dst-port=any \
```


```
sa-src-address=2001:db8:be1:6501::1 sa-dst-
address=2001:db8:be0:7501::1 \
```

```
tunnel=yes action=encrypt proposal=default
```

#### • All traffic between subnets will be encrypted

• For more info see <u>IPsec manual page</u>







# Module 4 Summary

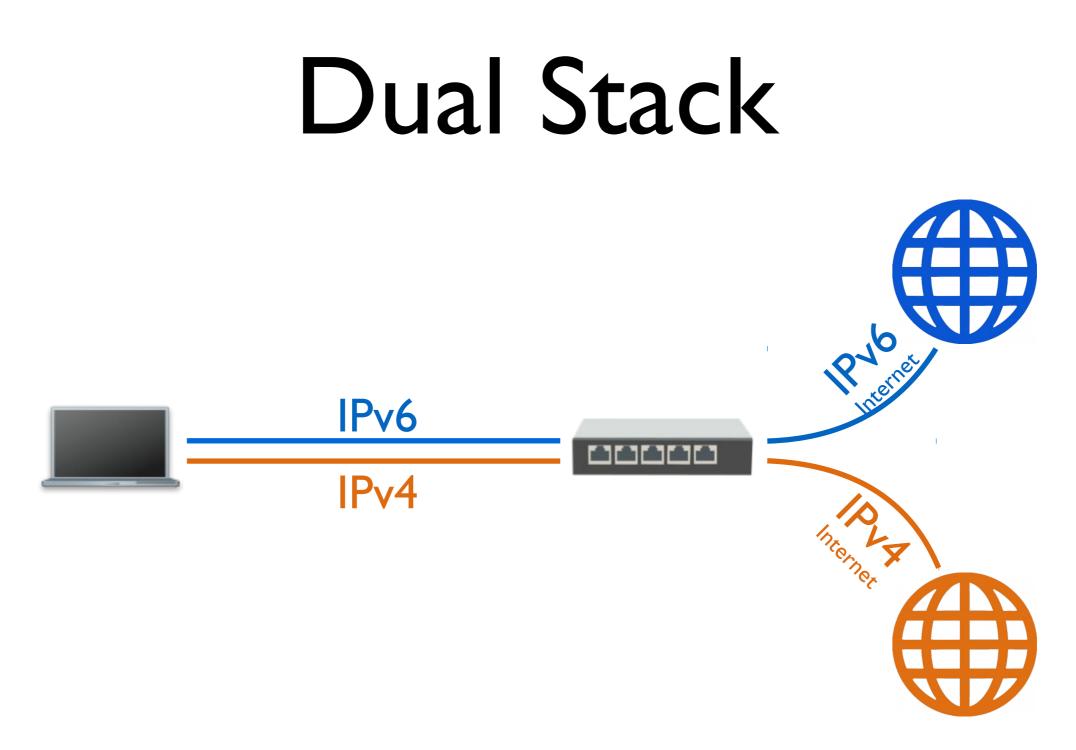


# Mikroik Certified IPv6 Engineer (MTCIPv6E) Module 5

Transition Mechanisms



# Transition Mechanisms


- Dual stack
- 6to4
- 6RD
- Teredo
- DS-lite (Dual stack lite)



# Dual Stack

- Fully functional IPv4 and IPv6 work side by side
- The most recommended way of implementing IPv6
- Also endorsed by RIPE



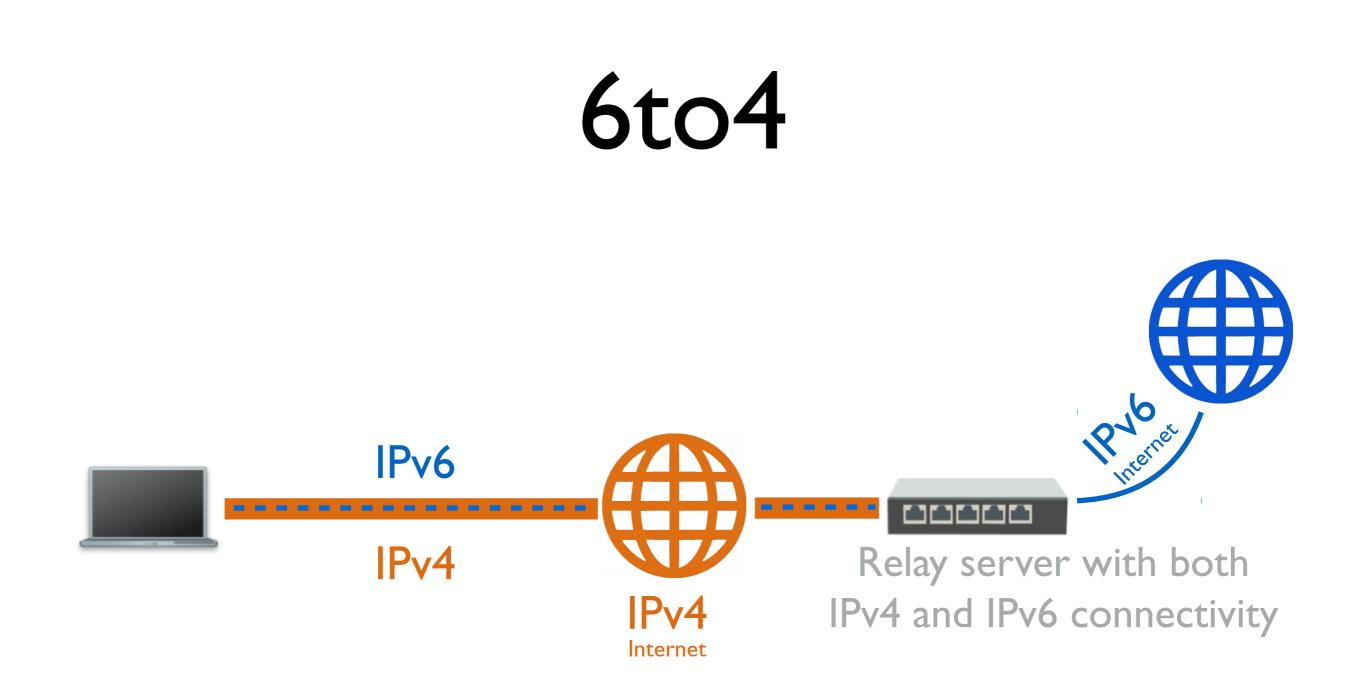


End-user device (host) has both IPv4 and IPv6 connectivity



# Transition Mechanisms

 If for some reason dual stack is not possible, there are other options




- Allows IPv6 packets to be transmitted over an IPv4 network
- A 6to4 relay server with native IPv6 connectivity needs to be configured on the other end
- Intended only as a transition mechanism, not as a permanent solution



- IPv6 packets are encapsulated in IPv4 packets
- Delivered to a 6to4 relay via IPv4 network
- Decapsulated and sent forward as IPv6 packets





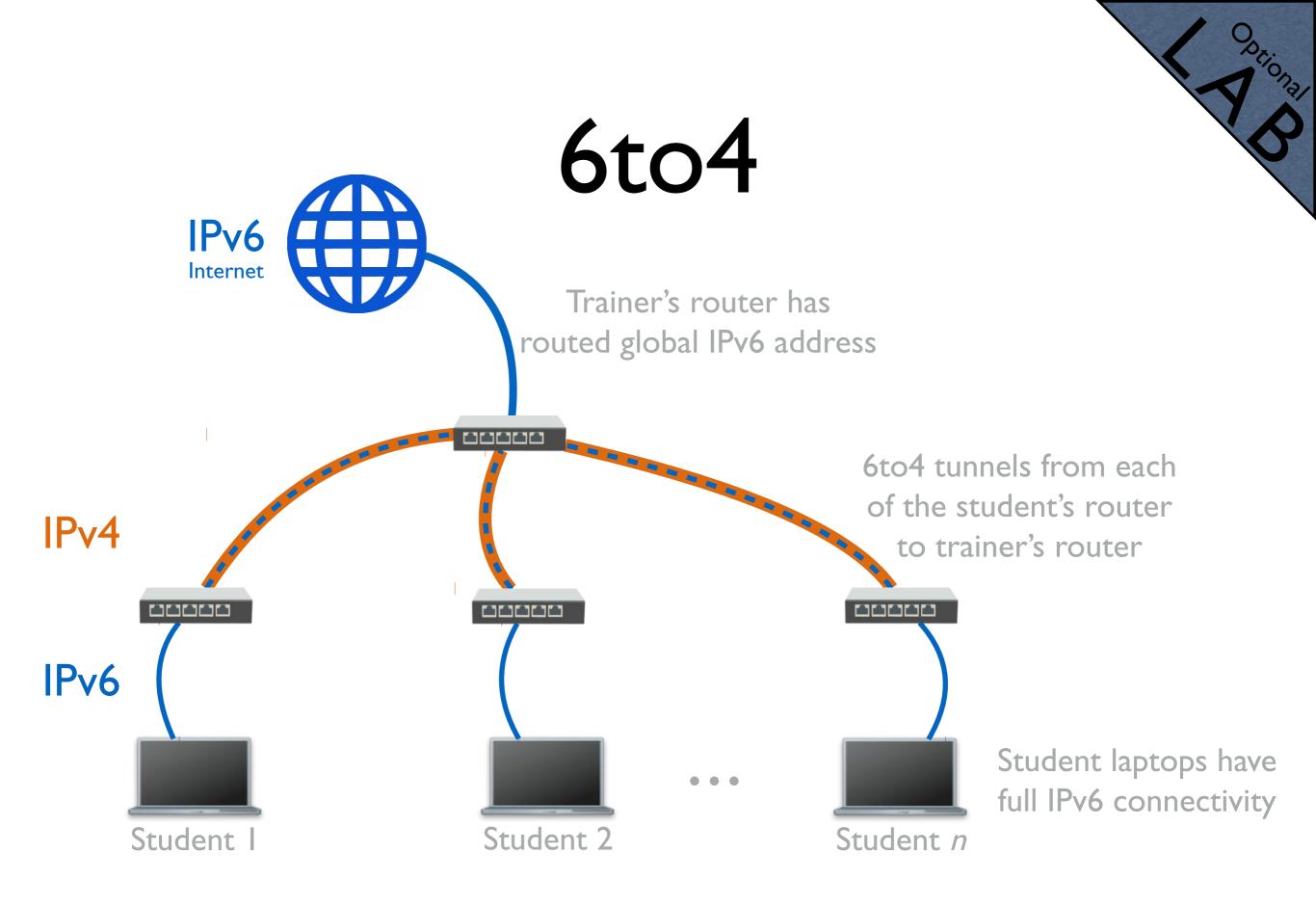


- Ready to use services offer 6to4 tunnels free of charge
- E.g. Hurricane Electric, SixXS
- Can setup your own

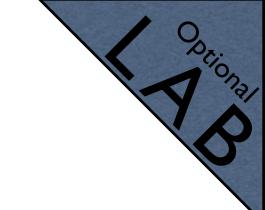


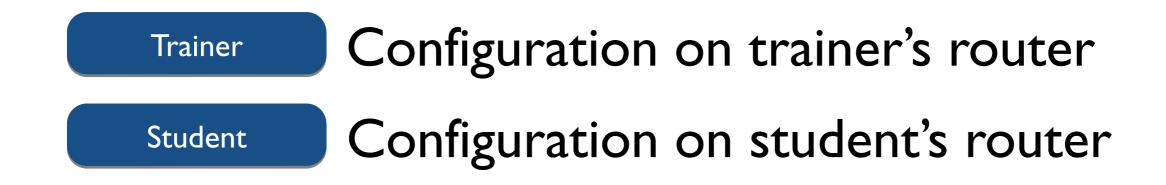
- Hurricane Electric (<u>tunnelbroker.net</u>) provides a 6to4 service with ready to use configuration for RouterOS
- Additional information how to get IPv6 connectivity can be found on <u>wiki.mikrotik.com</u>




- RouterOS 6to4 interface is used to set up the tunnel
- Local and remote public IPv4 addresses have to be entered
- 6to4 uses encapsulation, the MTU has to be changed to a smaller one




|                                   | New Interface |                       |                       |         |
|-----------------------------------|---------------|-----------------------|-----------------------|---------|
|                                   | General       | Status                | Traffic               | ОК      |
| Your public IP<br>Relay server IP |               | Name:                 | 6to4-tunnel           | Cancel  |
|                                   |               | Type:                 | 6to4 Tunnel           | Apply   |
|                                   |               | MTU:                  | 1280                  | Disable |
|                                   |               | L2 MTU:               |                       | Comment |
|                                   | Local /       | Address:              | 192.0.2.0             | Сору    |
|                                   | Remote /      | Address:              | 184.105.253.10        | Remove  |
|                                   |               | : Secret:<br>epalive: | <ul> <li>▼</li> </ul> | Torch   |
|                                   | enabled       |                       | running slave         |         |

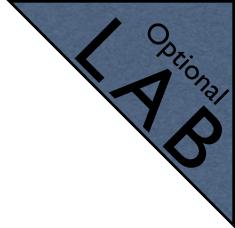

#### Interfaces '+' 6to4 Tunnel







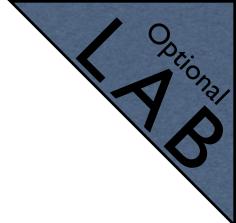






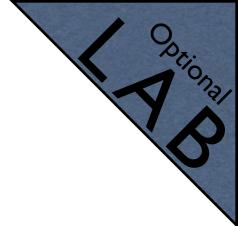



- Trainer's router has been assigned a routed IPv6 prefix
  - Depending on the class size /60 might do, /56 should always be more than enough
- Decide how are you going to assign IPv4 and IPv6 addresses to student router's
- Create 6to4 tunnels from your router to each of student's routers (via IPv4)



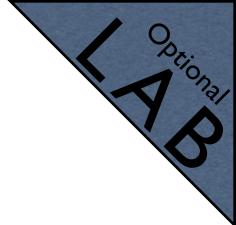



- Assign each student IPv4 address which will be used to create a 6to4 tunnel back to your router
- Assign IPv6 ULAs to your end of tunnels, assign each student their 6to4 endpoint IPv6 address
- Create routes to student IPv6 prefixes through 6to4 interfaces



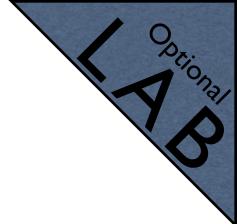






- The trainer will give you:
  - An IPv4 address that will be used to create a 6to4 tunnel
  - An IPv6 ULA that will be used for 6to4 interface
  - An IPv6 prefix which will be used to assign IP addresses to your devices via SLAAC
  - IPv6 address to use for the default route



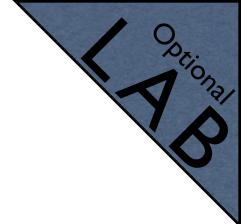



- Assign IPv4 address an interface which is connected to the trainer's router
- Create a 6to4 tunnel to the IP which the trainer gave you
- Assign IPv6 ULA to the 6to4 interface
- Create IPv6 pool with the assigned prefix



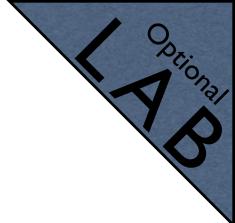


- Add global IPv6 address to the local interface from the prefix, that the trainer gave to you, set advertise = yes
- Make sure that there is at least one reachable DNS server in IP DNS
- Add default IPv6 (::/0) via the trainer's 6to4 interface address






- When done, open <u>ipv6.mikrotik.com</u> in your browser
- The end result should be that your laptop has full IPv6 connectivity via IPv4 network using 6to4 tunnel which encapsulates IPv6 packets into IPv4 packets



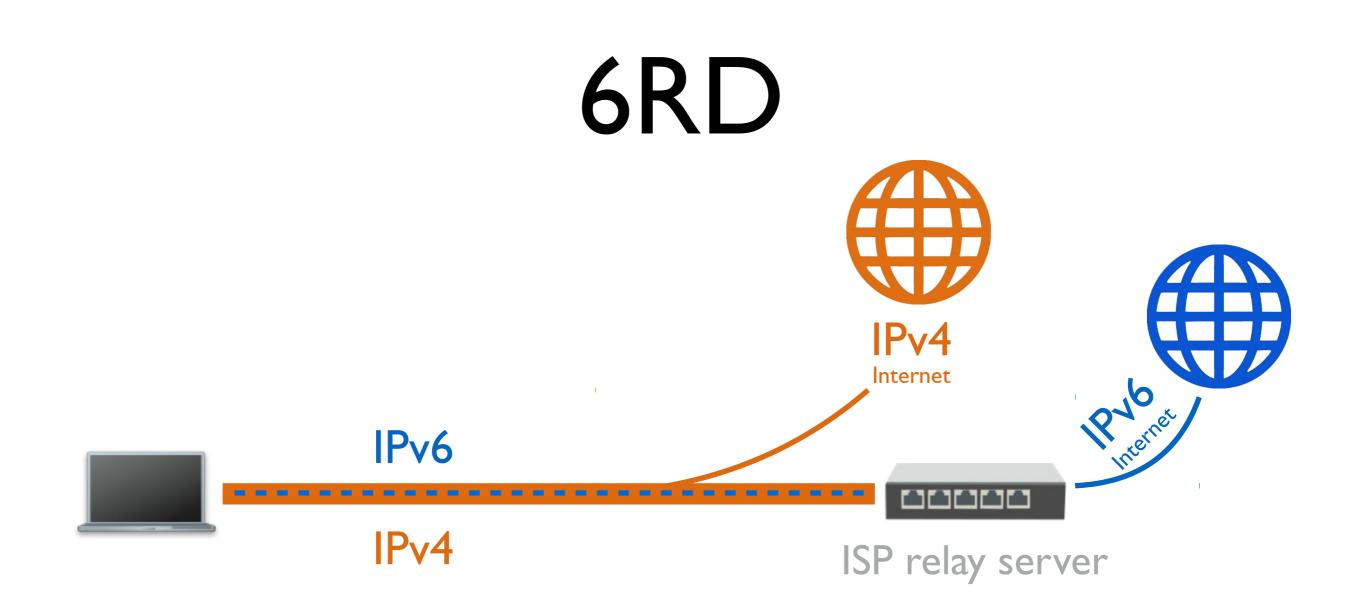





- The trainer will give you a public IPv4 address
- Configure it on the router
- Register yourself on <u>tunnelbroker.net</u>
- Create a new regular tunnel (choose a destination close to you)
- Configure the tunnel on your router






- Tunnelbroker website provides a script for RouterOS which can be used to set up the tunnel
- For more info see
   <u>Tunnelbroker example on wiki.mikrotik.co</u>
   <u>m</u>
- When done, open <u>ipv6.mikrotik.com</u> in your browser



# 6RD

- IPv6 Rapid Deployment is 6to4 derivative
- IPv6 relay is controlled by your ISP
- From client to ISP is IPv4 network only
- On the client side additional software is needed to encapsulate IPv6 into IPv4 packets
- Described in <u>RFC5569</u>







# Teredo

- Teredo encapsulates IPv6 traffic into IPv4 UDP packets
- The traffic is sent through IPv4 Internet
- Unlike 6to4, Teredo works behind an IPv4
   NAT
- Uses Teredo prefix 2001::/32

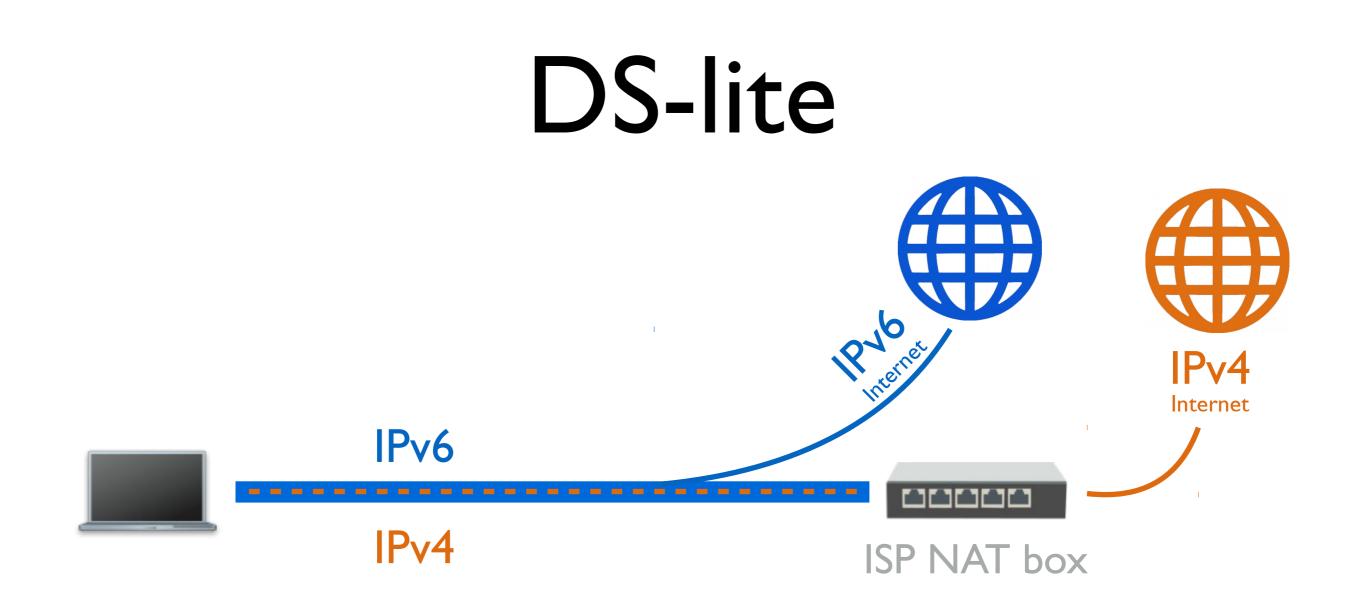


# Teredo

- Can only provide a single IPv6 address per tunnel endpoint
- Cannot be used to distribute addresses to multiple hosts like 6to4
- Developed by Microsoft
- Described in <u>RFC4380</u>



## **DS-lite**


- Dual stack lite
- IPv6 only links are used between the ISP and the client
- Client has native IPv6 connectivity
- When and IPv4 packet needs to be sent, it is encapsulated into an IPv6 packet



# **DS-lite**

- Sent to the ISP's NAT box which decapsulates and forwards it as IPv4 traffic
- NAT is centralized at the ISP level
- Clients use private IPv4 addresses (e.g. 10.0.0/8, 172.16.0.0/12, 192.168.0.0/16)
- ISP Client network is IPv6 only





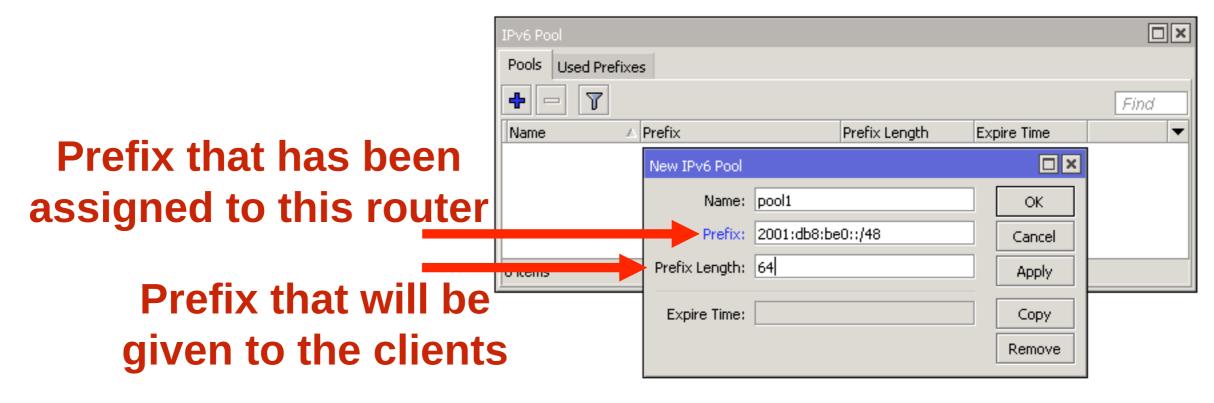


## Module 5 Summary



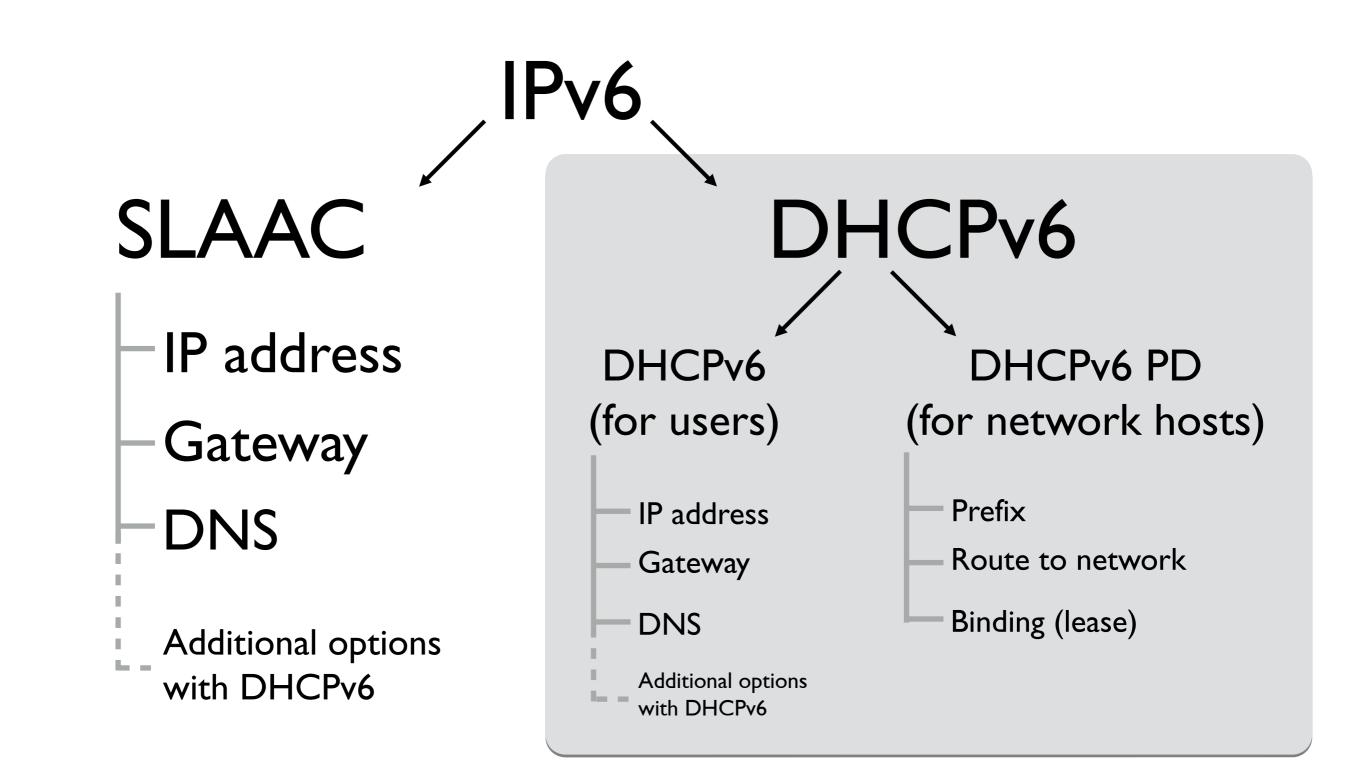
# Mikrofik Certified IPv6 Engineer (MTCIPv6E) Module 6

Interoperability




#### IPv6 Pool

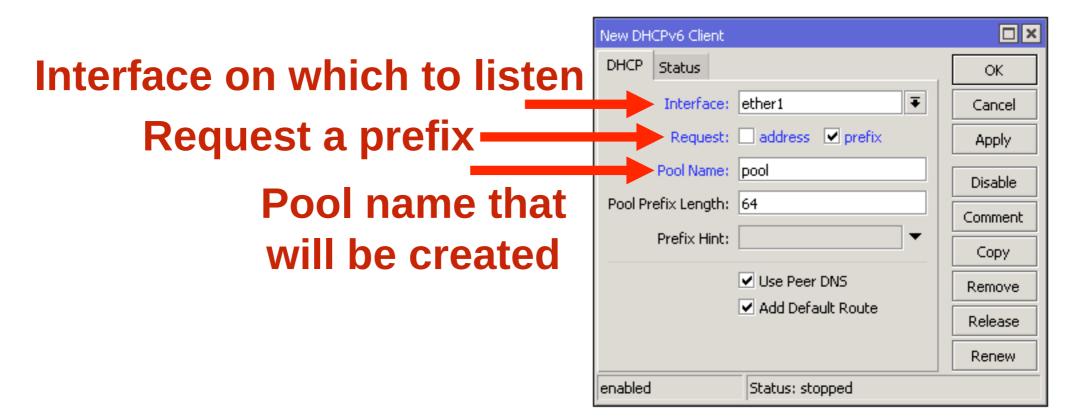
- Define range of IPv6 addresses that is used for SLAAC, DHCPv6 and PPP servers
- Groups IPv6 addresses for further usage
- A single configuration point for all features that assign IPv6 addresses to clients




#### IPv6 Pool



IPv6 Pool '+'








- For acquiring IPv6 prefix from a DHCPv6 PD server
- PD client sets route to the DHCPv6 PD server
- Afterwards the router can subdivide the acquired prefix and hand out to it's clients





IPv6 DHCP Client '+'



| D | DHCPv6 Client                                                                                                            |        |      |    |     |        |                   |  |                        | ×           |       |  |
|---|--------------------------------------------------------------------------------------------------------------------------|--------|------|----|-----|--------|-------------------|--|------------------------|-------------|-------|--|
|   | 🕂 📼 🖉 🕅 🍸 Release Renew                                                                                                  |        |      |    |     |        |                   |  |                        |             |       |  |
|   | Interface 🛆 Request Pool Name Pool Prefix Length Use Peer DNS Add Default Route Prefix Address DUID Expires After Status |        |      |    |     | Status | -                 |  |                        |             |       |  |
|   | ether1                                                                                                                   | prefix | pool | 64 | yes | yes    | 2001:db8:be0::/56 |  | 0x00030001080027967aa1 | 2d 23:59:45 | bound |  |
|   |                                                                                                                          |        |      |    |     |        |                   |  |                        |             |       |  |
|   |                                                                                                                          |        |      |    |     |        |                   |  |                        |             |       |  |
| 1 | item                                                                                                                     |        |      |    |     |        |                   |  |                        |             |       |  |

#### IPv6 DHCP Client

| Pools Used Prefixes Find              |                        | IPv6 Pool  |                   |               |             | X |
|---------------------------------------|------------------------|------------|-------------------|---------------|-------------|---|
|                                       |                        | Pools Use  | d Prefixes        |               |             |   |
|                                       |                        | <b>+</b> - | 7                 |               | Find        |   |
|                                       |                        | Name 🛛 🛆   | Prefix            | Prefix Length | Expire Time | ▼ |
| pool 2001:db8:be0::/56 64 2d 23:59:19 |                        | pool       | 2001:db8:be0::/56 | 64            | 2d 23:59:19 |   |
| Pool is created                       | <b>Pool is created</b> | 1 :4       |                   |               |             |   |
|                                       | outomotioolly          |            |                   |               |             |   |
| automatically<br>by the PD Client     |                        |            | IPv6              | Pool          |             |   |



| DHCPV6  | 5 Client < | ether1>                   |         |
|---------|------------|---------------------------|---------|
| DHCP    | Status     |                           | OK      |
|         | Prefix:    | 2001:db8:be0::/56         | Cancel  |
| A       | ddress:    |                           | Apply   |
|         | DUID:      | 0x00030001080027967aa1    | Disable |
|         | Server:    | fe80::e68d:8cff:febd:ea3a | Comment |
| Expire  | s After:   | 2d 23:59:26               | Сору    |
|         |            |                           | Remove  |
|         |            |                           | Release |
|         |            |                           | Renew   |
| enabled |            | Status: bound             |         |

IPv6 DHCP Client



## DHCP unique identifier

- DHCP unique identifier (DUID). Each DHCP client and server has exactly one DUID
- DHCP servers use DUIDs to identify clients for the selection of configuration parameters
- DHCP clients use DUIDs to identify a server in messages where a server needs to be identified.



- DHCPv6 PD (prefix delegation)
- It is used to assign prefixes to network hosts (e.g. routers)
- To configure enable "Other Configuration" in IPv6 ND

|   | ND <all></all>       |                               |         |
|---|----------------------|-------------------------------|---------|
|   | Interface:           | all                           | ОК      |
|   | RA Interval:         | 200-600 s                     | Cancel  |
|   | RA Delay:            | 3s                            | Apply   |
|   | MTU:                 | ▼                             | Disable |
|   | Reachable Time:      | ▼ s                           | Сору    |
|   | Retransmit Interval: | ▼ s                           | Remove  |
|   | RA Lifetime:         | 1800 <b>×</b> s               |         |
| , | Hop Limit:           | ▼                             |         |
|   |                      | Advertise MAC Address         |         |
|   |                      | Advertise DNS                 |         |
|   |                      | Managed Address Configuration |         |
|   |                      | ✓ Other Configuration         |         |
|   | enabled              | default                       |         |

IPv6 ND 'all'



| New IPv6 Pool  |                   |        |
|----------------|-------------------|--------|
| Name:          | pool1             | ОК     |
| Prefix:        | 2001:db8:be0::/48 | Cancel |
| Prefix Length: | 56                | Apply  |
| Expire Time:   |                   | Сору   |
|                |                   | Remove |
|                | Pv6 Pool          | ·+'    |

- Add IPv6 address pool from which prefixes will be assigned
- Specify assigned prefix length



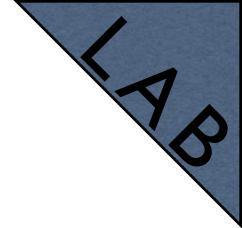
| New | DHCPv6 Ser   | rver        |         |
|-----|--------------|-------------|---------|
|     | Name:        | server1     | ОК      |
|     | Interface:   | bridge1     | Cancel  |
| Ade | dress Pool6: | pool1 🗧 🔺   | Apply   |
|     | Lease Time:  | 3d 00:00:00 | Disable |
|     |              |             | Comment |
|     |              |             | Сору    |
|     |              |             | Remove  |
| ena | bled         |             |         |
|     | Pv6          | DHCPv6      | ·+'     |

- Add new DHCP server on an interface
- Configure address pool from which addresses will be assigned



| DHCPv6 Server       |                |      |         |             |        |         | × |
|---------------------|----------------|------|---------|-------------|--------|---------|---|
| DHCP Bindings       |                |      |         |             |        |         |   |
| +- **               | 9              |      |         |             |        | Find    |   |
| Address 🛛 🛆         | DUID           | IAID | Server  | Expire Time | Status | Comment | ▼ |
| D 2001:db8:be0::/56 | 0x080027967aa1 | 1    | server1 | 2d 23:38:29 | bound  |         | ] |
|                     |                |      |         |             |        |         |   |
|                     |                |      |         |             |        |         |   |
|                     |                |      |         |             |        |         |   |
| 1 item              |                |      |         |             |        |         |   |
| 1                   |                |      |         |             |        |         |   |

IPv6 DHCP Server Bindings


 Assigned prefixes can be observed in bindings menu



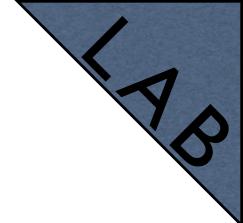
#### DHCPv6 Client

- For acquiring IPv6 address from a DHCPv6 server
- Client can set default route to the DHCPv6 server
- Acquires DNS, NTP and other information



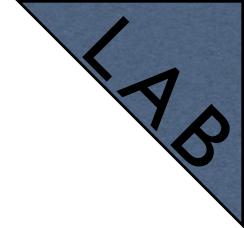


### DHCPv6 PD


- Trainer will now configure DHCPv6 PD server on his router
- It will issue /60 prefixes
- Configure DHCPv6 PD client on your router
- Assign /64 prefix to your laptop via SLAAC

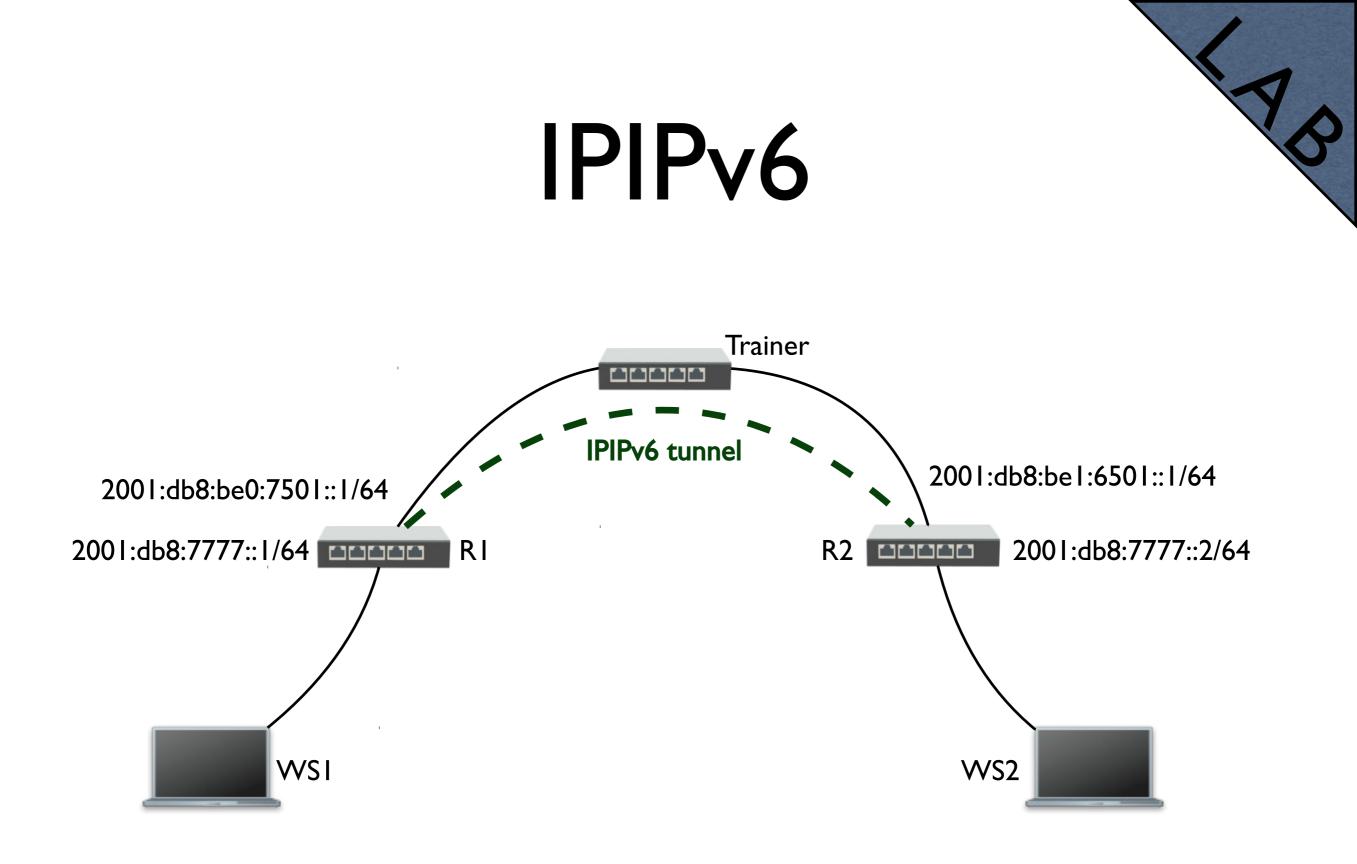


#### IPv6 Tunnels

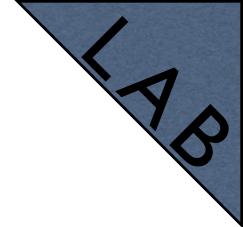

- Currently RouterOS supports following IPv6 tunnels
  - IPIPv6
  - EolPv6
  - GRE6
- Work in a similar way as IPv4 counterparts





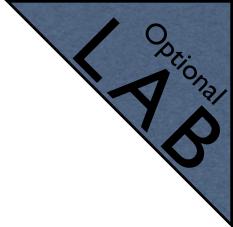

- Pair up with another student
- Create an IPIPv6 tunnel between your routers
  - On R1, set source address R1 public address, destination R2 public address
  - On R2, set source address R2 public address, destination R1 public address





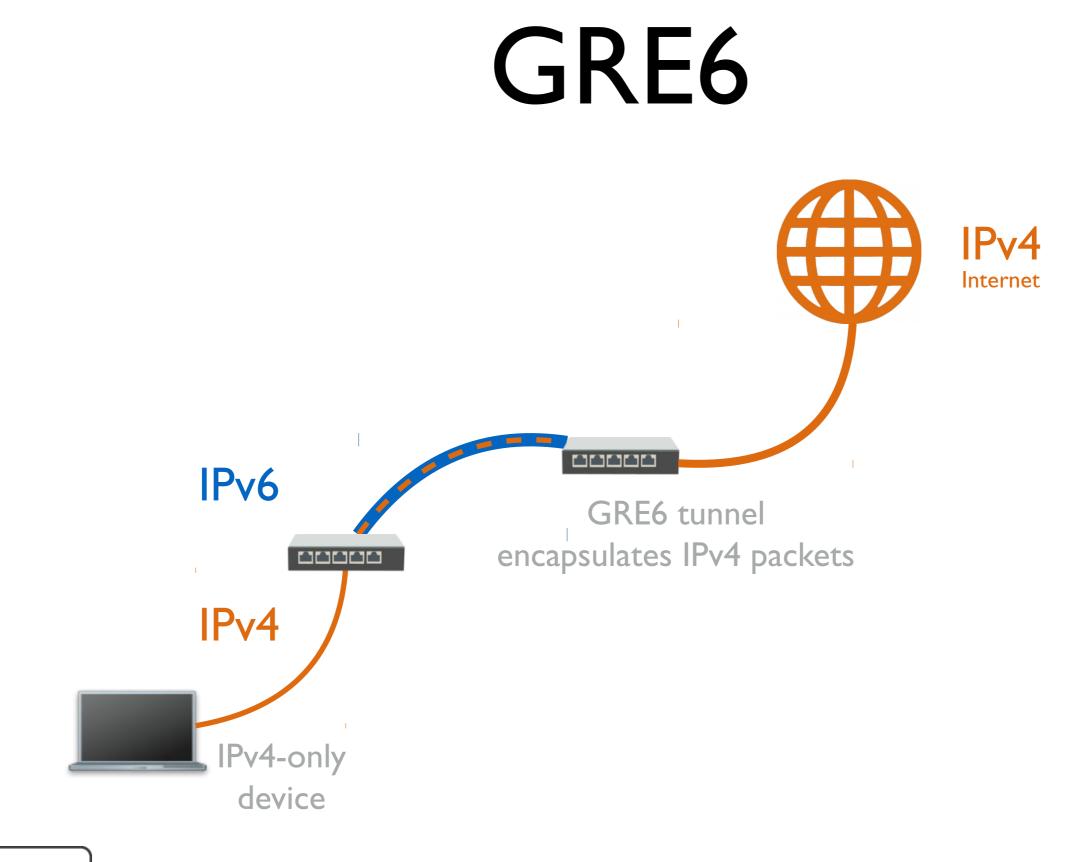

- Assign arbitrary IPv6 addresses on R1 and R2 IPIPv6 tunnel interfaces
- Both from the same subnet, e.g.
  - 2001:db8:7777::1/64 (R1)
  - 2001:db8:7777::2/64 (R2)
- Ping tunnel addresses from your routers
- Observe the IPIPv6 interface traffic counters









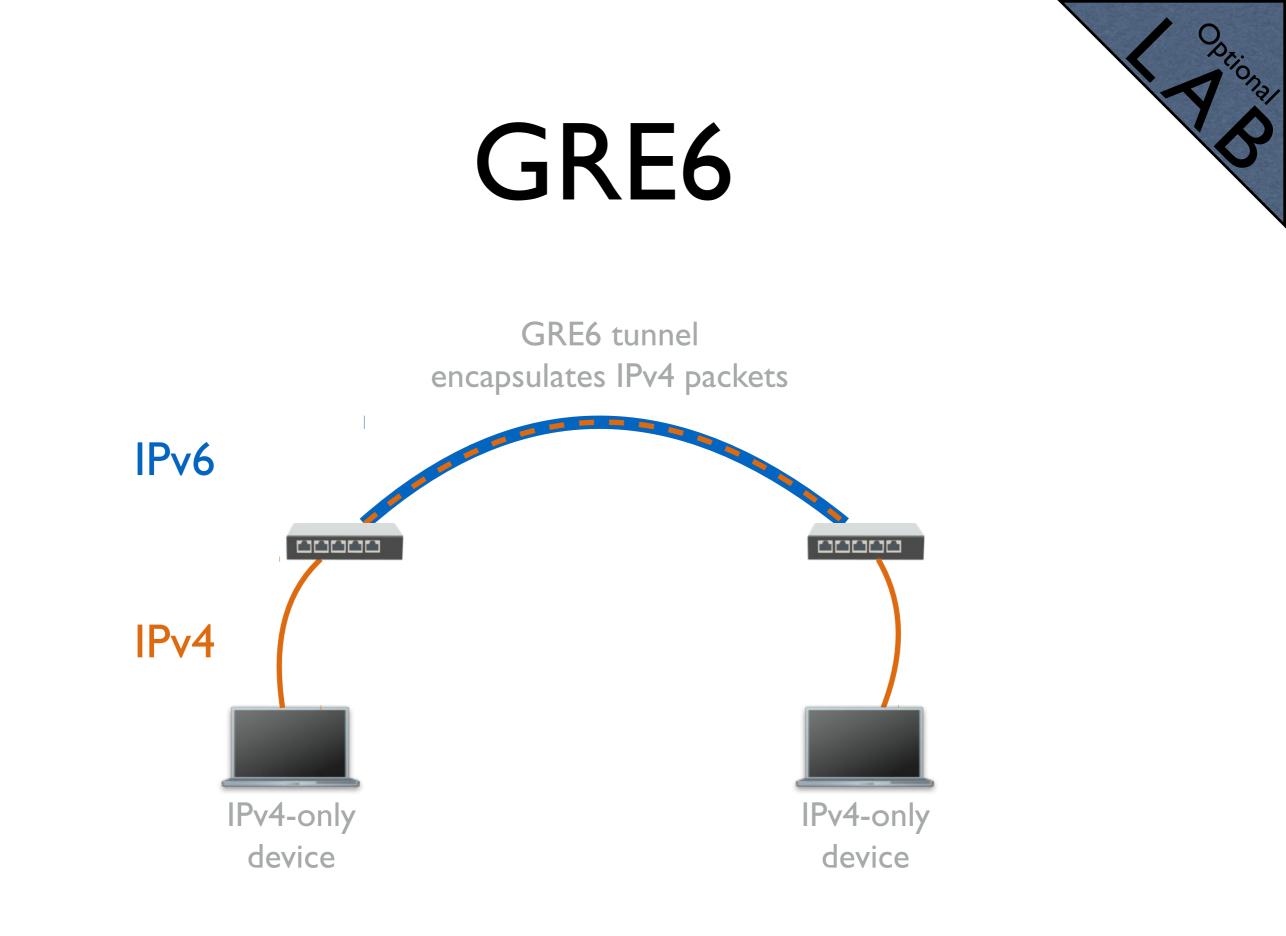


- Add IPsec secret on the IPIPv6 tunnel interface on both routers (the same secret phrase)
- Observe the IP IPsec menu
- Now the IPIPv6 tunnel is encrypted





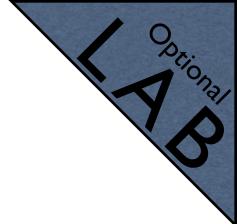
- Add static routes on RI and R2 routers to your internal networks through the IPIPv6 tunnel
- Ping between laptops (WS1 and WS2)
- Now the communication between your laptops is going through the encrypted IPIPv6 tunnel







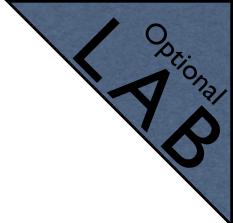

#### GRE6


- In cases when you have IPv6-only network, but need to provide access to the Internet to a device which only supports IPv4
- IPv6 tunnels can be used to encapsulate
   IPv4 packets into IPv6 and tunnel them to a router which has IPv4 connectivity
- For example: GRE6 tunnel








#### GRE6



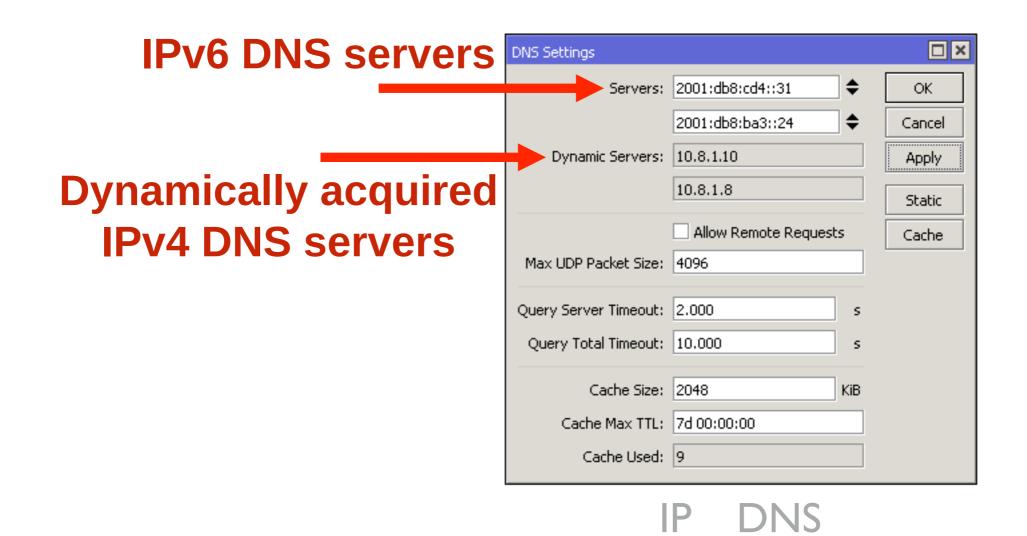
- Pair up with another student
- Both create a GRE6 tunnel to the other's router
- Agree on IPv4 addresses you're going to use inside the tunnel and on your laptops
- If necessary create masquerade rules, bridge interfaces or create static routes accordingly



#### GRE6

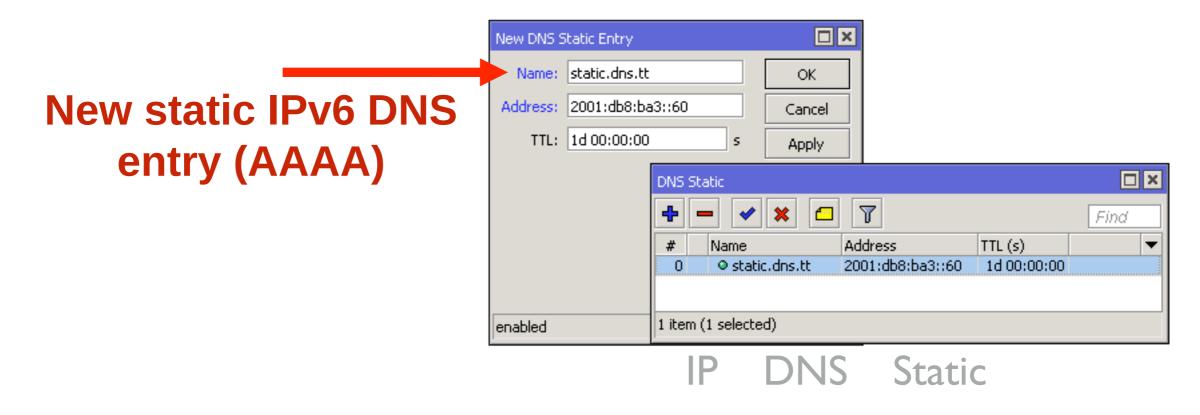


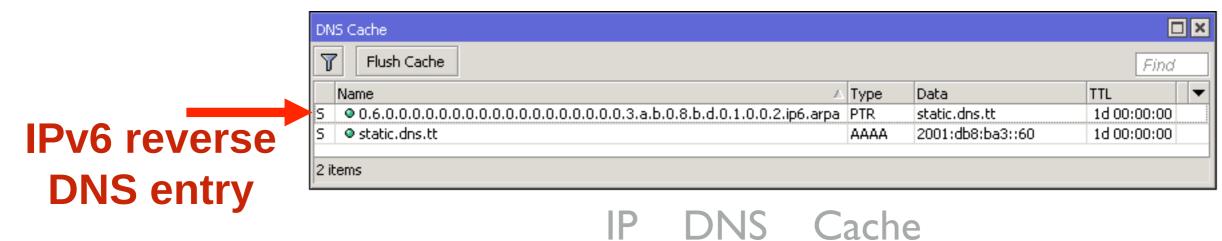
- Disable IPv6 on your laptops
- Set IPv4 addresses on your laptops either manually or using DHCP
- Ping each others laptop IPv4 addresses
- The connection between your routers is IPv6-only, but now for backwards compatibility you have IPv4 connectivity




## **IP Version Agnostic**

- IP DNS supports both IPv4 and IPv6 addresses
- Both for DNS servers and static entries





#### IP DNS





#### Static DNS







### IPv6 Reverse DNS

- Entry consists or 32 values separated by dots
- Zeros are not omitted
- ip6.arpa. is added at the end

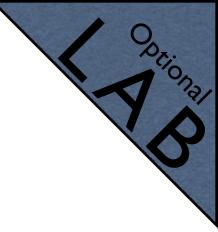
| AAAA | 2001:db8:3:4:5:6:7:8                                                      |
|------|---------------------------------------------------------------------------|
| PTR  | 8.0.0.0.7.0.0.0.6.0.0.0.5.0.0.0.4.0.0.0.3.0.0.0.8.b.d.0.1.0.0.2.ip6.arpa. |



#### NTP

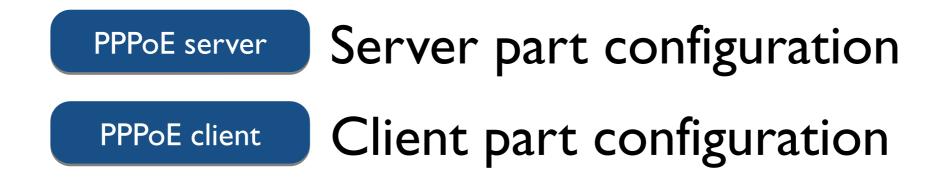
 NTP client supports both IPv4 and IPv6 addresses

| SNTP Client             |                  |        |
|-------------------------|------------------|--------|
|                         | Enabled          | ОК     |
| Mode:                   | unicast          | Cancel |
| Primary NTP Server:     | 2001:db8:cd4::31 | Apply  |
| Secondary NTP Server:   | 2001:db8:ba3::24 |        |
| Server DNS Names:       | 192.0.2.12       |        |
| Dynamic Servers:        | 10.8.1.10        |        |
|                         | 10.8.1.8         |        |
|                         | 10.8.1.6         |        |
| Poll Interval:          | 0 s              |        |
| Active Server:          |                  |        |
| Last Update From:       |                  |        |
| Last Update:            |                  |        |
| Last Adjustment:        |                  |        |
| Last Bad Packet From:   |                  |        |
| Last Bad Packet:        |                  |        |
| Last Bad Packet Reason: |                  |        |

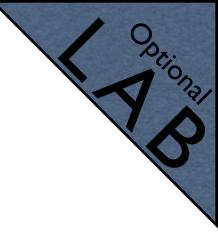

System SNTP Client



## PPP IPv6 Support


- PPP supports prefix delegation (PD) to PPP clients
- Use PPP Profile DHCPv6 PD Pool option to specify pools that will be assigned to clients
- If a RouterOS device is a client, a DHCPv6 PD client must be configured on PPP client interface

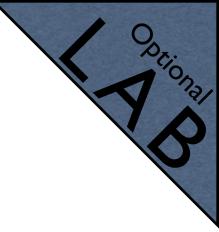





## PPP IPv6 Support

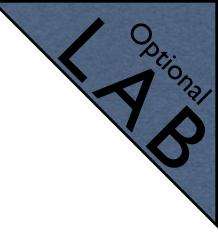
- Pair up with another student
- Decide who will create the server part and who the client part








## PPP IPv6 Support

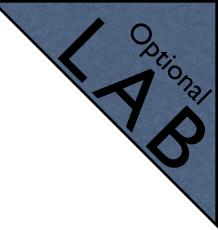

- To configure PPPoE server to assign IPv6 prefix to a RouterOS client following steps have to be done:
  - I.Create IP Pool from which prefixes will be assigned
  - 2.Create a PPP profile which will be used for IPv6
  - 3.Create a PPPoE server using the profile created in previous step





- To configure RouterOS PPPoE client to receive IPv6 prefix following steps have to be done:
  - 4.Create a PPPoE client
  - 5.Configure IPv6 DHCP PD client on the PPPoE client interface

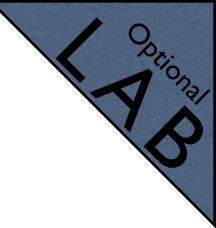





 To configure PPPoE server to assign IPv6 prefix to a RouterOS client following steps have to be done:

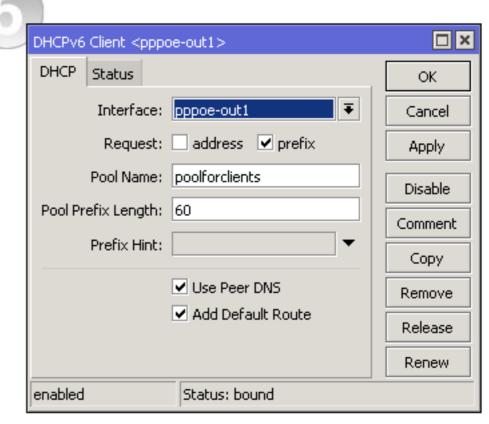
|                              | 2                                               |         |
|------------------------------|-------------------------------------------------|---------|
| IPv6 Pool <pool2></pool2>    | PPP Profile <ppp_pd_for_ipv6></ppp_pd_for_ipv6> |         |
| Name: pool2                  | General Protocols Limits Queue Scripts          | ОК      |
| Prefix: 2001:db8:deb::/48 Ca | ncel Name: PPP_PD_for_IPv6                      | Cancel  |
| Prefix Length: 56 Ap         | pply Local Address:                             | Apply   |
| Expire Time:                 | Remote Address:                                 | Comment |
| Ren                          | nove Remote IPv6 Prefix Pool:                   | Сору    |
|                              | DHCPv6 PD Pool: pool2                           | Remove  |
| IPv6 Pool '+'                | PPP Profiles '+'                                |         |





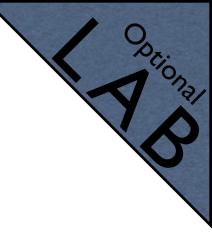



| PPPoE Service <ppp< th=""><th>pe_ipv6&gt;</th><th></th></ppp<> | pe_ipv6>             |                 |
|----------------------------------------------------------------|----------------------|-----------------|
| Service Name:<br>Interface:                                    |                      | OK<br>Cancel    |
| Max MTU:                                                       | •                    | Apply           |
| Max MRU:<br>MRRU:                                              | ▼                    | Disable<br>Copy |
| Keepalive Timeout:<br>Default Profile:                         | 10  PPP_PD_for_IPv6  | Remove          |
|                                                                | One Session Per Host |                 |
| Max Sessions:                                                  | <b></b>              |                 |
| PADO Delay:                                                    | ▼ ms                 |                 |
| Authentication:                                                | ✓ mschap2            |                 |
| enabled                                                        |                      |                 |


PPP PPPoE Servers '+'






| Interface <ppp< th=""><th>oe-out1&gt;</th><th></th><th></th><th></th></ppp<> | oe-out1>  |                   |            |              |
|------------------------------------------------------------------------------|-----------|-------------------|------------|--------------|
| General Dial                                                                 | Out Stat  | us Traffic        |            | ОК           |
|                                                                              | Service:  |                   | <b>•</b>   | Cancel       |
|                                                                              | AC Name:  |                   | <b>•</b>   | Apply        |
|                                                                              | User:     | pppoeclient       |            | Disable      |
| F                                                                            | assword:  | ***               |            | Comment      |
|                                                                              | Profile:  | default           | ₹          | Сору         |
| Keepalive                                                                    | Timeout:  | 60                | <b>_</b> ▲ | Remove       |
|                                                                              |           | Dial On Demand    |            | Torch        |
|                                                                              |           | Use Peer DNS      |            | PPPoE Scan   |
|                                                                              |           | Add Default Route |            |              |
| Default Route                                                                | Distance: | 0                 |            |              |
|                                                                              | Allow:    | ✓ mschap2         |            |              |
| enabled                                                                      | runnin    | g slave           | Status     | ;; connected |

PPP Interface '+' PPPoE Client



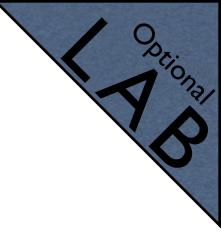
IPv6 DHCP Client '+'





| D | HCPv6 Client    |    |         |                |                    |              |                   |                   |         |                        |               |        |         | × |
|---|-----------------|----|---------|----------------|--------------------|--------------|-------------------|-------------------|---------|------------------------|---------------|--------|---------|---|
|   | ┣ ━ 🖉           | ** | -       | Release        | Renew              |              |                   |                   |         |                        |               |        | Find    |   |
|   | Interface       | Δ. | Request | Pool Name      | Pool Prefix Length | Use Peer DNS | Add Default Route | Prefix            | Address | DUID                   | Expires After | Status | Comment | - |
|   | pppoe-out1      |    | prefix  | poolforclients | 60                 | ) yes        | yes               | 2001:db8:deb::/56 |         | 0x00030001d4ca6de2658f | 2d 23:59:21   | bound  |         |   |
|   | Received prefix |    |         |                |                    |              |                   |                   |         |                        |               |        |         |   |
| 1 | item            |    |         |                |                    |              |                   |                   |         |                        |               |        |         |   |

#### IPv6 DHCP Client


#### New pool from received prefix

|   | IPv6 Pool          |                   |               |             |         |      |
|---|--------------------|-------------------|---------------|-------------|---------|------|
| • | Pools Used Prefixe | s                 |               |             |         |      |
| K | 4 - 7              |                   |               |             |         | Find |
|   | Name 🛛 🛆           | Prefix            | Prefix Length |             | Comment | -    |
|   | poolforclients     | 2001:db8:deb::/56 | 60            | 2d 23:59:07 |         |      |
|   |                    |                   |               |             |         |      |
|   | 1 item             |                   |               |             |         |      |
|   | <u> </u>           |                   |               |             |         |      |









 Now the PPPoE client RouterOS can issue prefixes to it's clients via SLAAC or DHCPv6 PD



- IPv6 global routing works similar as in IPv4
- Concepts are the same
- Static and/or dynamic routing can be used
- Dynamic routing protocols such as OSPF (v3), RIP (ng), BGP support IPv6



- IPv6 link-local addresses can be used to communicate between hosts
- There's no need for global IPv6 addresses
- Fully functional internal IPv6 network can be created with LL addresses



|                         | IPvé  | Address List                  |           |                |           |          |
|-------------------------|-------|-------------------------------|-----------|----------------|-----------|----------|
|                         | ÷     | - 🖉 🖾 🍸                       |           |                |           | Find     |
|                         |       | Address /                     | From Pool | Interface      | Advertise | <b>~</b> |
|                         | DL    | 🕆fe80::e68d:8cff:febd:ea39/64 |           | ether1-gateway | no        |          |
|                         | DL    | 🕆fe80::e68d:8cff:febd:ea3a/64 |           | bridge1        | no        |          |
| <b>Bridge interface</b> |       |                               |           |                |           |          |
|                         |       |                               |           |                |           |          |
| LL address              | 4 ite | ms                            |           |                |           |          |
|                         |       |                               |           |                |           |          |

IPv6 Addresses

#### \$ ping6 fe80::e68d:8cff:febd:ea3a%en6

PING6(56=40+8+8 bytes) fe80::2e0:4cff:fe68:33a%en6 --> fe80::e68d:8cff:febd:ea3a%en6 16 bytes from fe80::e68d:8cff:febd:ea3a%en6, icmp\_seq=0 hlim=64 time=0.376 ms 16 bytes from fe80::e68d:8cff:febd:ea3a%en6, icmp\_seq=1 hlim=64 time=0.498 ms 16 bytes from fe80::e68d:8cff:febd:ea3a%en6, icmp\_seq=2 hlim=64 time=0.502 ms

--- fe80::e68d:8cff:febd:ea3a%en6 ping6 statistics ---3 packets transmitted, 3 packets received, 0.0% packet loss round-trip min/avg/max/std-dev = 0.376/0.459/0.502/0.058 ms

Ping router's LL address from macOS. Have to specify interface!



en6: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500
options=4<VLAN\_MTU>
ether 00:e0:4c:68:03:3a
inet6 fe80::2e0:4cff:fe68:33a%en6 prefixlen 64 scopeid 0x9
nd6 options=1<PERFORMNUD>
media: autoselect (1000baseT <full-duplex>)
status: active

#### Computer LL address

| <pre>[admin@3rd_fl_Kaspars] &gt; /ping fe80::2e0:4cff:fe SEQ HOST</pre> |       |            | <b>ace=bridge1</b><br>STATUS |
|-------------------------------------------------------------------------|-------|------------|------------------------------|
| 0 fe80::2e0:4cff:fe68:33a                                               | 56    | 64 Oms     | echo reply                   |
| 1 fe80::2e0:4cff:fe68:33a                                               | 56    | 64 Oms     | echo reply                   |
| 2 fe80::2e0:4cff:fe68:33a                                               | 56    | 64 Oms     | echo reply                   |
| sent=3 received=3 packet-loss=0% min-rtt=0ms                            | s avg | -rtt=0ms : | max-rtt=0ms                  |



## Not Yet

- Several of popular RouterOS features which are available for IPv4 are not available using IPv6:
  - NAT
     Policy routing
  - HotSpot
     DHCPv6 server
  - RADIUS integration



## IPv6 NAT

- NAT was originally used for ease of rerouting traffic in IP networks without renumbering every host
- It has become a popular tool in conserving global IPv4 addresses
- There are 2<sup>128</sup> IPv6 addresses vs 2<sup>32</sup> IPv4



## IPv6 NAT

- Each IPv6 enabled host can have a global IPv6 address
- In most common cases there's usually no need for IPv6 NAT
- NAT is not a security feature, firewall is needed also for IPv4



## IPv6 NAT

- Companies can apply for Provider Independent (PI) address space
- In case a provider has to be changed, IP's can remain the same



## IPv6 HotSpot

- RouterOS current HotSpot implementation does not support IPv6
- MikroTik is planning to introduce a HotSpot version which will support IPv6
  - No specific timeframe can be given yet



# **RADIUS Integration**

- Currently RouterOS services does not yet fully support RADIUS IPv6 arguments
- MikroTik is planning to implement IPv6 support for RouterOS services using RADIUS
  - No specific timeframe can be given yet



# Policy Routing

- Currently RouterOS policy routing does not support IPv6
- MikroTik is planning to implement IPv6 support for policy routing
  - No specific timeframe can be given yet



## DHCPv6 server

- Currently RouterOS supports
  - DHCPv6 PD (prefix delegation)
  - SLAAC
- It is not possible to assign custom size prefixes smaller than /64 from RouterOS



## Tools

- Most of RouterOS tools support both IPv4 and IPv6 addresses, for example:
  - Ping
     E-mail
  - Traceroute
     Netwatch
  - Torch Traffic flow
  - Traffic generator



# Ping

| [admin@MikroTik] > /ping 2a00:1450:400f: | 807::200e                          |
|------------------------------------------|------------------------------------|
| SEQ HOST                                 | SIZE TTL TIME STATUS               |
| 0 2a00:1450:400f:807::200e               | 56 57 10ms echo reply              |
| 1 2a00:1450:400f:807::200e               | 56 57 9ms echo reply               |
| 2 2a00:1450:400f:807::200e               | 56 57 9ms echo reply               |
| sent=3 received=3 packet-loss=0% min     | n-rtt=9ms avg-rtt=9ms max-rtt=10ms |

## Ping tool supports both IPv4 and IPv6 addresses



#### Traceroute

| Traceroute (Run | ning)               |              |         |               |             |             |              |                  |          |           | × |
|-----------------|---------------------|--------------|---------|---------------|-------------|-------------|--------------|------------------|----------|-----------|---|
| Traceroute To:  | 2a00:1450:400f:804: | :200e        |         |               |             |             |              |                  |          | Start     |   |
| Packet Size:    | 56                  |              |         |               |             |             |              |                  |          | Stop      | Ē |
| Timeout:        | 1000                |              |         |               |             |             |              |                  | ms       | Close     |   |
| Protocol:       | icmp                |              |         |               |             |             |              |                  | ₹ N      | ew Windov | ~ |
| Port:           | 33434               |              |         |               |             |             |              |                  |          |           |   |
|                 | Use DNS             |              |         |               |             |             |              |                  |          |           |   |
| Count:          |                     |              |         |               |             |             |              |                  | -        |           |   |
|                 |                     |              |         |               |             |             |              |                  | _<br>  • |           |   |
| Max Hops:       |                     |              |         |               |             |             |              |                  | •        |           |   |
| Src. Address:   |                     |              |         |               |             |             |              |                  | •        |           |   |
| Interface:      |                     |              |         |               |             |             |              |                  | •        |           |   |
| DSCP:           |                     |              |         |               |             |             |              |                  | •        |           |   |
| Routing Table:  |                     |              |         |               |             |             |              |                  | •        |           |   |
| -               |                     |              |         |               |             | <b>.</b>    |              |                  |          |           |   |
| Hop 🛆 Host      |                     | Loss<br>0.0% | Sent 77 | Last<br>0.3ms | Avg.<br>0.3 | Best<br>0.3 | Worst<br>1.0 | Std. Dev.<br>0.1 | History  | Status    | - |
| 2               |                     | 100.0%       |         | timeout       | 0.3         | 0.3         | 1.0          | 0.1              |          |           |   |
|                 | 2330:c:18::2        | 0.0%         |         | 0.6ms         | 0.6         | 0.5         | 0.8          | 0.1              |          |           |   |
|                 | 2330:c:18::1        | 0.0%         |         | 4.3ms         | 3.0         | 1.0         | 5.0          | 1.2              |          |           |   |
|                 | 4860:1:1:0:3122::   | 0.0%         |         | 8.1ms         | 8.5         | 8.0         | 32.5         | 2.8              |          |           |   |
| 6 2001:4        | 4860::1:0:26ec      | 0.0%         | 76      | 20.4ms        | 13.9        | 11.2        | 55.6         | 7.2              |          |           |   |
|                 | 4860:0:1::e5        | 0.0%         |         | 9.6ms         | 9.6         | 9.4         | 10.2         | 0.1              |          |           |   |
| 8 2a00:1        | 1450:400f:804::200e | 0.0%         | 76      | 8.5ms         | 8.5         | 8.4         | 8.9          | 0.1              |          |           |   |
| 8 items         |                     |              |         |               |             |             |              |                  |          |           |   |

Tools Traceroute

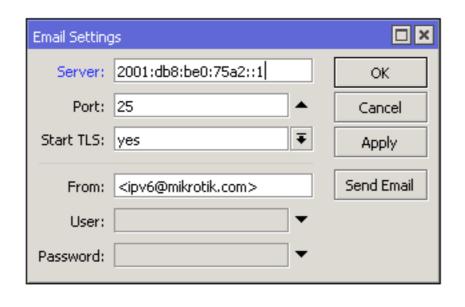


#### Torch

 Torch tool supports capturing both IPv4 and IPv6 traffic

| Torch (Running)               |                        |                  |           |      |       |             |              |                |
|-------------------------------|------------------------|------------------|-----------|------|-------|-------------|--------------|----------------|
| Basic                         |                        | Filters          |           |      |       |             |              | Start          |
| Interface: bridge1            |                        | Src. Address:    | 0.0.0.0/0 |      |       |             |              | Stop           |
| Entry Timeout: 00:00:03       | s                      | Dst. Address:    | 0.0.0.0/0 |      |       |             |              |                |
| Collect                       |                        | - Src. Address6: | ::/0      |      |       |             |              | Close          |
| Src. Address                  | Src. Address6          |                  |           |      |       |             |              | New Window     |
| Dst. Address                  | ✔ Dst. Address6        | Dst. Address6:   |           |      |       |             |              |                |
| MAC Protocol                  | Port                   | MAC Protocol:    | all       |      |       |             | Ŧ            |                |
| Protocol                      | VLAN Id                | Protocol:        | any       |      |       |             | Ŧ            |                |
| DSCP                          |                        | Port:            | any       |      |       |             | Ŧ            |                |
|                               |                        | VLAN Id:         |           |      |       |             | Ŧ            |                |
|                               |                        |                  |           |      |       |             |              |                |
|                               |                        | DSCP:            | any       |      |       |             | Ŧ            |                |
| Eth. Protocol 🛆 Protocol Src. | Ds                     |                  | VLAN Id   | DSCP |       |             | Tx Packet Ra | te 🛛 Rx Packel |
| 86dd (ipv6) 2                 | 2                      | 200              | 100       |      |       | 3.7 kbps    |              | 2              |
| 86dd (ipv6) 2                 | 2                      |                  | -         |      | 0 bps |             |              | 0              |
| 86dd (ipv6) 2                 |                        |                  |           |      | 0 bps |             |              | 0              |
| 86dd (ipv6) 2                 |                        |                  |           |      | 0 bps | 0 bps       |              | 0              |
| •                             |                        |                  |           |      |       |             |              |                |
| 4 items Total Tx: 5.6 k       | ops Total Rx: 3.7 kbps | Total Tx Pac     | ket: 2    |      | Tota  | l Rx Packet | : 4          |                |

Tools Torch




## Traffic Generator

- RouterOS traffic generator supports both IPv4 and IPv6 addresses
- It has several IPv6 specific options, for example:
  - ipv6-next-header
  - ipv6-traffic-class
  - ipv6-flow-label



#### Email





 Email tool accepts both IPv4 and IPv6 SMTP address



#### Netwatch

| New Netwatc | h Host              |         |
|-------------|---------------------|---------|
| Host Up     | Down                | ОК      |
| Host: 2     | 001:db8:be0:75a2::1 | Cancel  |
| Interval: 0 | 0:01:00             | Apply   |
| Timeout: 10 | 000 ms              | Disable |
| Status:     |                     | Comment |
| Since:      |                     | Сору    |
|             |                     | Remove  |
| enabled     |                     |         |

| Tools Net | watch |
|-----------|-------|
|-----------|-------|

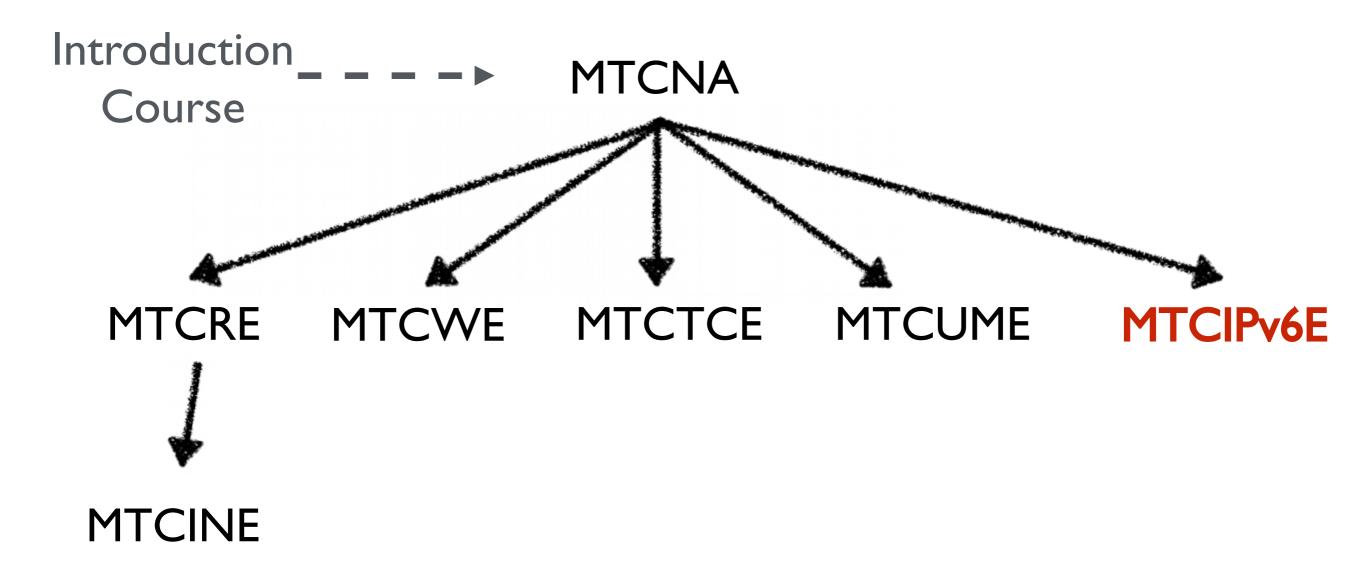
 Email tool accepts both IPv4 and IPv6 SMTP address



#### Traffic Flow

- RouterOS traffic flow supports collecting statistics for both IPv4 and IPv6 addresses
- Traffic flow is compatible with Cisco NetFlow
- NetFlow versions 1, 5 and 9 are supported




# Module 6 Summary



# MTCIPv6E Summary



## MikroTik Certified Courses



For more info see: training.mikrotik.com



## Certification Test

- If needed reset router configuration and restore from a backup
- Make sure that you have an access to the <u>www.mikrotik.com</u> training portal
- Login with your account
- Choose my training sessions
- Good luck!





